$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ $\ds{\int_{0}^{1}\ln\pars{x}\ln\pars{1 - x}\,\dd x:\ {\large ?}}$ .
\begin{align} &\color{#66f}{\large\int_{0}^{1}\ln\pars{x}\ln\pars{1 - x}\,\dd x} =\int_{x\ =\ 0}^{x\ =\ 1}\ln\pars{1 - x}\dd\bracks{x\ln\pars{x} - x + 1} \\[3mm]&=\left.\bracks{x\ln\pars{x} - x + 1}\ln\pars{1 - x}\right\vert_{0}^{1} -\int_{0}^{1}\bracks{x\ln\pars{x} - x + 1}\,{-1 \over 1 - x}\,\dd x =\int_{0}^{1}{x\ln\pars{x} \over 1 - x}\,\dd x + 1 \\[3mm]&=-\lim_{\mu\ \to\ 1}\partiald{}{\mu} \int_{0}^{1}{1 - x^{\mu} \over 1 - x}\,\dd x + 1 =-\lim_{\mu\ \to\ 1}\partiald{\Psi\pars{\mu + 1}}{\mu} + 1 \end{align} donde $\ds{\Psi\pars{z}}$ es el Función Digamma $\ds{\bf 6.3.1}$ y utilizamos el identidad $\ds{\bf 6.3.22}$ .
$$ \color{#66f}{\large\int_{0}^{1}\ln\pars{x}\ln\pars{1 - x}\,\dd x} =-\Psi'\pars{2} + 1=-\Psi'\pars{1} + 2=-\zeta\pars{2} + 2 $$ Aquí utilizamos las identidades: $$ \Psi'\pars{z + 1} = \Psi'\pars{z} - {1 \over z^{2}}\,,\qquad \Psi^{\rm\pars{n}}\pars{1}=\pars{-1}^{n + 1}\,n!\,\zeta\pars{n + 1}\,,\quad n = 1,2,3,\ldots $$
Desde $\ds{\zeta\pars{2} = {\pi^{2} \over 6}}$ : $$ \color{#66f}{\large\int_{0}^{1}\ln\pars{x}\ln\pars{1 - x}\,\dd x} =\color{#66f}{\large 2 - {\pi^{2} \over 6}} \approx {\tt 0.3551} $$