Aquí hay una prueba condicional directa de que si n denota un número entero positivo, entonces n^3 + 1 es impar si y sólo si n^2 - 1 es impar:
1) SUPUESTO: n denota un número entero positivo.
2) El número n es impar, o n es par - según el paso 1).
3) Si n^3 + 1 es impar, entonces n^2 - 1 es impar.
DIRECT CONDITIONAL SUBPROOF
a) Assumption: n^3 + 1 is odd.
b) The number n is even.
DIRECT NON-CONDITIONAL SUBPROOF
i) The number n is not odd.
SUBPROOF BY CONTRADICTION
(1) ASSUMPTION: The number n is odd.
(2) n^3 + 1 = (an odd number)^3 + 1--per Step (1)
= (an odd number) + 1
= (an even number).
(3) There exists a contradiction--per Steps (2) and a). Q.E.D.
ii) The number n is even--per the Disjunctive Syllogism rule applied to Steps 2) and i), respectively. Q.E.D.
c) n^2 – 1 = (an even number)^2 – 1--per Step b)
= (an even number) - 1
= (an odd number). Q.E.D.
4) Si n^2 - 1 es impar, entonces n^3 + 1 es impar.
DIRECT CONDITIONAL SUBPROOF
a) ASSUMPTION: n^2 - 1 is odd.
b) The number n is even.
DIRECT NON-CONDITIONAL SUBPROOF
i) The number n is not odd.
SUBPROOF BY CONTRADICTION
(1) ASSUMPTION: The number n is odd.
(2) n^2 – 1 = (an odd number)^2 – 1--per Step (1)
= (an odd number) - 1
= (an even number)
(3) There exists a contradiction--per Steps (2) and a). Q.E.D.
ii) The number n is even--per the Disjunctive Syllogism rule applied to Steps 2) and i), respectively. Q.E.D.
c) n^3 + 1 = (an even number)^3 + 1--per Step b)
= (an even number) + 1
= (an odd number). Q.E.D.
5) El número n^3 + 1 es impar si y sólo si n^2 - 1 es impar--por los pasos 3) y 4). Q.E.D.