¿Es mi proceso correcto?
Creo que es correcto.
Podemos separarlo en casos como los siguientes : $$\left\lfloor\left|\frac{x-1}{y-1}\right|\right\rfloor+\left\lfloor\left|\frac{y-1}{x-1}\right|\right\rfloor=2$$
$$\iff \left(\left\lfloor\left|\frac{x-1}{y-1}\right|\right\rfloor,\left\lfloor\left|\frac{y-1}{x-1}\right|\right\rfloor\right)=(0,2),(1,1),(2,0)$$ ya que ambos $|(x-1)/(y-1)|$ y $|(y-1)/(x-1)|$ son positivos.
Caso 1 : $$\begin{align}&\left(\left\lfloor\left|\frac{x-1}{y-1}\right|\right\rfloor,\left\lfloor\left|\frac{y-1}{x-1}\right|\right\rfloor\right)=(0,2)\\&\iff 0\le\left|\frac{x-1}{y-1}\right|\lt 1\quad\text{and}\quad 2\le\left|\frac{y-1}{x-1}\right|\lt 3\\&\iff 0\le\left|\frac{x-1}{y-1}\right|\lt 1\quad\text{and}\quad \frac 13\lt\left|\frac{x-1}{y-1}\right|\le \frac 12\\&\iff \frac 13\lt\left|\frac{x-1}{y-1}\right|\le \frac 12\\&\iff \frac 13\lt\frac{x-1}{y-1}\le \frac 12\\&\iff \frac 13(y-1)\gt x-1\ge \frac 12(y-1)\\&\iff 3x-2\lt y\le 2x-1\end{align}$$
Caso 2 : $$\begin{align}&\left(\left\lfloor\left|\frac{x-1}{y-1}\right|\right\rfloor,\left\lfloor\left|\frac{y-1}{x-1}\right|\right\rfloor\right)=(1,1)\\&\iff 1\le\left|\frac{x-1}{y-1}\right|\lt 2\quad\text{and}\quad 1\le\left|\frac{y-1}{x-1}\right|\lt 2\\&\iff 1\le\left|\frac{x-1}{y-1}\right|\lt 2\quad\text{and}\quad \frac 12\lt\left|\frac{x-1}{y-1}\right|\le 1\\&\iff \left|\frac{x-1}{y-1}\right|=1\\&\iff \frac{x-1}{y-1}=1\\&\iff y=x\end{align}$$
Caso 3 : Por simetría en torno a $y=x$ , $$\begin{align}&\left(\left\lfloor\left|\frac{x-1}{y-1}\right|\right\rfloor,\left\lfloor\left|\frac{y-1}{x-1}\right|\right\rfloor\right)=(2,0)\\&\iff 3y-2\lt x\le 2y-1\\&\iff \frac 12x+\frac 12\le y\lt \frac 13x+\frac 23\end{align}$$
Por lo tanto, queremos encontrar el área de los siguientes dos triángulos en rojo.
$\qquad\qquad\qquad$
Por lo tanto, desde $A(-2,0),B(-2,-1/2),C(-1,0)$ la respuesta es $$2\times [\triangle{ABC}]=2\times\frac 12\times (-1-(-2))\times (0-(-1/2))=\color{red}{\frac 12}.$$