¿Estoy en lo cierto sobre esta Función de Transferencia:
Mi trabajo:
$$\text{I}_{\text{in}}(t)+\text{I}_{\text{p}}(t)=0\Longleftrightarrow$$ $$\text{I}_{\text{p}}(t)=-\text{I}_{\text{in}}(t)\Longleftrightarrow$$ $$\text{I}_{\text{p}}(t)=-\frac{\text{V}_{\text{in}}(t)}{\text{R}_1}$$
$$\text{I}_{\text{p}}(t)=\text{I}_{\text{C}}(t)+\text{I}_{\text{R}_2}(t)\Longleftrightarrow$$ $$\text{I}_{\text{p}}(t)=\text{C}\text{V}'_{\text{out}}(t)+\frac{\text{V}_{\text{out}}(t)}{\text{R}_2}$$
$$-\frac{\text{V}_{\text{in}}(t)}{\text{R}_1}=\text{C}\text{V}'_{\text{out}}(t)+\frac{\text{V}_{\text{out}}(t)}{\text{R}_2}\Longleftrightarrow$$ $$\mathcal{L}_t\left[-\frac{\text{V}_{\text{in}}(t)}{\text{R}_1}\right]_{(s)}=\mathcal{L}_t\left[\text{C}\text{V}'_{\text{out}}(t)+\frac{\text{V}_{\text{out}}(t)}{\text{R}_2}\right]_{(s)}\Longleftrightarrow$$ $$-\frac{\text{V}_{\text{in}}(s)}{\text{R}_1}=\text{C}s\text{V}_{\text{out}}(s)+\frac{\text{V}_{\text{out}}(s)}{\text{R}_2}\Longleftrightarrow$$ $$\color{red}{\frac{\text{V}_{\text{out}}(s)}{\text{V}_{\text{in}}(s)}=-\frac{\text{R}_2}{\text{R}_1\left(1+\text{C}\text{R}_2s\right)}}$$