Primer aviso de que
$$ \begin{align} &\frac{1}{2} \int_{0}^{\infty} \log (4 \sin^{2} x) \Big(1 - x \, \text{arccot}(x) \Big) \, dx \\ &= \frac{\log(4)}{2} \int_{0}^{\infty} \Big( 1- x \, \text{arccot}(x) \Big) \, dx + \frac{1}{2} \int_{0}^{\infty} \log (\sin^{2} x) \Big(1 - x \, \text{arccot}(x) \Big) \, dx \\ &= \frac{\pi \log(2)}{4} + \frac{1}{2} \int_{0}^{\infty} \log (\sin^{2} x) \Big(1 - x \, \text{arccot}(x) \Big) \, dx . \tag{1} \end{align}$$
Ahora uso el hecho de $$ \text{Re} \log(1-e^{2ix}) = \frac{1}{2} \log(4 \sin^{2} x) $$
e integrar por partes para obtener
$$ \begin{align} &\frac{1}{2} \int_{0}^{\infty} \log (4\sin^{2} x) \Big(1 - x \, \text{arccot}(x) \Big) \, dx \\ &= \text{Re} \int_{0}^{\infty} \log (1-e^{2ix}) \Big(1- x \, \text{arccot}(x) \Big) \, dx \\ &= \text{Re} \, \Big(1- x \, \text{arccot}(x) \Big) \frac{i \, \text{Li}_{2}(e^{2ix})}{2} \Bigg|^{\infty}_{0}- \text{Re} \, \frac{i}{2} \int_{0}^{\infty} \left(\frac{x}{1+x^{2}} - \text{arccot}(x) \right) \text{Li}_{2} (e^{2ix}) \, dx \\ &= 0 + \frac{1}{2} \int_{0}^{\infty} \Big(\frac{x}{1+x^{2}} - \text{arccot}(x) \Big) \sum_{n=1}^{\infty} \frac{\sin({\color{red}{2}}nx)}{n^{2}} \, dx \\ &= \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \int_{0}^{\infty} \Big(\frac{x}{1+x^{2}} - \text{arccot}(x) \Big) \sin (2nx) \, dx \\ &= \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \left(-\frac{\pi}{4n} + \frac{1}{n} \int_{0}^{\infty} \frac{\cos(2nx)}{(1+x^{2})^{2}} \, dx \right) \tag{2} \\ &= \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \Big(-\frac{\pi}{4n} + \frac{1}{n} \frac{\pi}{4} e^{-2n} (2n+1) \Big) \tag{3} \\ &= - \frac{\pi}{8} \sum_{n=1}^{\infty} \frac{1}{n^{3}} + \frac{\pi}{4} \sum_{n=1}^{\infty} \frac{e^{-2n}}{n^{2}} + \frac{\pi}{8} \sum_{n=1}^{\infty} \frac{e^{-2n}}{n^{3}} \\ &= -\frac{\pi}{8} \zeta(3) + \frac{\pi}{4} \text{Li}_{2}(e^{-2}) + \frac{\pi}{8} \text{Li}_{3} (e^{-2}). \end{align}$$
Por lo tanto,
$$ \int_{0}^{\infty} \log (\sin^{2} x) \Big(1 - x \, \text{arccot}(x) \Big) \, dx = \frac{\pi}{4} \Big(\text{Li}_{3} (e^{-2}) + 2 \text{Li}_{2}(e^{-2}) -2 \log(2) - \zeta(3) \Big).$$
$ $
$(1)$ Simple Integral De La $\int_0^\infty (1-x\cot^{-1} x)dx=\frac{\pi}{4}$.
$(2)$ Integrar por partes de nuevo.
$(3)$ Probablemente hay una pregunta aquí acerca de la evaluación de $\int_{0}^{\infty} \frac{\cos(ax)}{(1+x^{2})^{2}} \, dx$, pero no puedo encontrar en el momento. El enfoque más directo es usar el teorema de los residuos. También se podría utilizar el hecho de que $\int_{0}^{\infty} \frac{\cos (ax)}{b^{2}+x^{2}} \, dx = \frac{\pi}{2b} e^{-ab} \, , \, (a \ge 0,b > 0) $ y diferenciar ambos lados con respecto a $b$.