Estoy tratando de demostrar que $e^{-x^4\sin^2x}\in L_2(R)$ . Esto significa que $\int_{-\infty}^{\infty} e^{-2x^4\sin^2x}dx < \infty$ . Así que intenté utilizar algunos métodos habituales, pero $\sin(x)$ no tiene límite de infinito y no puedo coger un límite superior integrable para utilizar el teorema de Weierstrass. Por favor, denme alguna pista.
Respuestas
¿Demasiados anuncios?Tenemos \begin{align*} & \int_{ - \infty }^{ + \infty } {e^{ - 2x^4 \sin ^2 x} dx} = 2\int_0^{ + \infty } {e^{ - 2x^4 \sin ^2 x} dx} \\ & = 2\int_0^{\pi /2} {e^{ - 2x^4 \sin ^2 x} dx} + 2\sum\limits_{n = 1}^\infty {\int_{\left( {n - \frac{1}{2}} \right)\pi }^{\left( {n + \frac{1}{2}} \right)\pi } {e^{ - 2x^4 \sin ^2 x} dx} } \\ & = 2\int_0^{\pi /2} {e^{ - 2x^4 \sin ^2 x} dx} + 2\sum\limits_{n = 1}^\infty {\int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {e^{ - 2(x + \pi n)^4 \sin ^2 x} dx} } \\ & < 2\int_0^{\pi /2} {e^{ - 2x^4 \sin ^2 x} dx} + 2\sum\limits_{n = 1}^\infty {\int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {e^{ - 2(x + \pi n)^4 (2x/\pi )^2 } dx} } \\ & < 2\int_0^{\pi /2} {e^{ - 2x^4 \sin ^2 x} dx} + 2\sum\limits_{n = 1}^\infty {\int_{-\frac{\pi }{2}}^{ \frac{\pi }{2} } {e^{ - 8\pi ^2 \left( {n - \frac{1}{2}} \right)^4 x^2 } dx} } \\ & < 2\int_0^{\pi /2} {e^{ - 2x^4 \sin ^2 x} dx} + 2\sum\limits_{n = 1}^\infty {\int_{-\infty}^{ + \infty } {e^{ - 8\pi ^2 \left( {n - \frac{1}{2}} \right)^4 x^2 } dx} } \\ & < \pi + 2\sqrt {\frac{2}{\pi }} \sum\limits_{n = 1}^\infty {\frac{1}{{(2n - 1)^2 }}} = \pi + \frac{{\pi ^{3/2} }}{{2\sqrt 2 }}<+\infty. \end{align*}