1 votos

Comprensión de la prueba de la raíz de la razón

enter image description here

enter image description here

Así es como razono.

Primero trato de identificar el método que se utiliza para dar la prueba. Sin embargo, soy muy malo para identificar si hay cuantificadores "ocultos" en el texto. (si lo hay, ¿podría alguien indicarlo?). $\forall$ serie ?

"Escoge un número r" también me da la impresión de que "para todos" es el cuantificador y que estamos tratando de construir una serie que sea mayor que la serie dada y que al mismo tiempo converja.

Por lo tanto, empiezo a preguntarme cómo puedo demostrar que una serie converge. Sé que si la cola de la serie converge entonces toda la serie converge.

Ahora bien, como no soy capaz de averiguar si la cola de la serie converge, ¿podría averiguar si hay una serie más grande que la original que converja y evolucione al mismo ritmo?

Utilizo el método de elección para construir esta serie que es convergente. Ahora he marcado con azul donde me atasco, porque no soy capaz de derivar esta serie como se señala con la flecha azul.

Si alguien pudiera señalar dónde falla mi razonamiento, y si el "método de elección y para todos" está correctamente asumido así como mostrar cómo se construye esta serie final se lo agradecería mucho.

1voto

Tim Raczkowski Puntos 14043

$a_{N+2}\le ra_{N+1}$ y como $a_{N+1}\le ra_N$ , $ra_{N+1}\le r(ra_N)$ . En otras palabras, $a_{N+2}\le r^2a_N$ .

¿Es esto lo que pregunta?

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X