Me gustaría demostrar que la siguiente suma trigonométrica
$$ \frac{1}{\sin(45°)\sin(46°)}+\frac{1}{\sin(47°)\sin(48°)}+\cdots+\frac{1}{\sin(133°)\sin(134°)}$$
telescopios para $$\frac{1}{\sin(1°)}$$
Lo tenemos: $$\begin{align} \sin(45°)\sin(46°)&=\frac{1}{2}(\cos(1°)+\sin(1°))\\ \sin(47°)\sin(48°)&=\frac{1}{2}(\cos(1°)+\sin(5°))\\ \sin(49°)\sin(50°)&=\frac{1}{2}(\cos(1°)+\sin(9°))\\ &\ \vdots\\ \sin(133°)\sin(134°)&=\frac{1}{2}(\cos(1°)+\sin(177°)) \end{align}$$
Así que la suma es:
$$\begin{align} \sum_{k=0}^{44} &\frac{2}{\cos(1°)+\sin(1+4k)} =\frac{2}{\cos(1°)+\sin(1°)}+\frac{2}{\cos(1°)+\sin(5°)}+\\ &\kern2.5in +\frac{2}{\cos(1°)+\sin(9°)}+\cdots+\frac{2}{\cos(1°)+\sin(177°)}. \end{align}$$
Aunque no creo que esta nueva expresión simplifique el problema.