9 votos

Cómo calcular $ \int_0^{\pi/2}\log(1+\sin(x))\log(\cos(x)) \,dx $ ?

Cómo calcular $$ \int_0^{\pi/2}\log(1+\sin(x))\log(\cos(x)) \,dx \,\,?$$ He intentado utilizar la serie de Fourier del log seno y log cos y he obtenido que la integral es igual a : $$ \frac{\pi^2}{24}-\sum_{k=1}^{\infty}\sum_{n=1}^{\infty}\frac{(-1)^{n+k}}{k(4k^2-(2n-1)^2)}$$ ¿alguien tiene una idea de cómo encontrar la forma cerrada de la última serie o cómo empezar de otra manera con la integral?

5voto

Quanto Puntos 21

Sustituir $t=\tan\frac x2$

\begin{align} &\int_0^{\pi/2}\ln(1+\sin x)\ln(\cos x) \,dx \\ =&\>2\int_0^{1}\frac{\ln\frac{(1+t)^2}{1+t^2}\ln \frac{1-t^2}{1+t^2} }{1+t^2}\,dt =\>4I_1 +4 I_2 -2I_3- 6I_4+2I_5 \end{align} donde, según el resultados

\begin{align} I_1 &= \int_0^1 \frac{\ln (1+t)\ln(1-t)}{1+t^2} dt = -G \ln 2-K+\frac{3 \pi ^3}{128}+\frac{3\pi}{32} \ln ^22\\ I_2 &= \int_0^1 \frac{\ln^2(1+t)}{1+t^2} dt = -2 G \ln 2-4 K+\frac{7 \pi ^3}{64}+\frac{3\pi}{16} \ln ^22 \\ I_3 &= \int_0^1 \frac{\ln (1+t^2)\ln(1-t)}{1+t^2} dt = -\frac{1}{2} G \ln 2+4 K -\frac{5 \pi ^3}{64}+\frac{\pi}{8} \ln ^22 \\ I_4 &= \int_0^1 \frac{\ln (1+t^2)\ln(1+t)}{1+t^2} dt = -\frac{5}{2} G \ln 2-4 K+\frac{7 \pi ^3}{64}+\frac{3\pi}{8} \ln ^22\\ I_5 &= \int_0^1 \frac{\ln^2(1+t^2)}{1+t^2} dt = -2 G \ln 2+4 K-\frac{7 \pi ^3}{96}+\frac{7\pi}{8} \ln ^22 \end{align}

con $K= \Im\text{Li}_3\left(\frac{1+i}{2}\right)$ . Juntos $$ \int_0^{\pi/2}\ln(1+\sin x)\ln(\cos x) \,dx =4\Im\text{Li}_3\left(\frac{1+i}{2}\right)-\frac{11\pi^3}{96}+\frac{3\pi}8\ln^22 $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X