El caso base es para $n=1$ :
$$a \in A_1 \iff |\{i \in \{1\} : a \in A_i\}| = 1 \iff |\{i\in \{1\} : a \in A_i\}| \text{ is odd}$$
desde $|\{i \in \{1\} : a \in A_i\}| \in \{0,1\}$ .
Supongamos que $a \in A_1 \Delta\, \cdots \Delta\,A_n \iff |\{i \in \{1, \ldots, n\}: a \in A_i\}|$ es impar.
Para $n+1$ tenemos \begin{align} a \in A_1 \Delta\, \cdots \Delta\,A_n \Delta\,A_{n+1} &\iff \vee\begin{cases} \big(a \in A_1 \Delta\, \cdots \Delta\,A_n\big) \wedge (a \notin A_{n+1}), \\ \big(a \notin A_1 \Delta\, \cdots \Delta\,A_n\big) \wedge (a \in A_{n+1})\end{cases} \\ &\iff \vee \begin{cases} \big(|\{i \in \{1, \ldots, n\}: a \in A_i\}| \text{ is odd}\big) \wedge (a \notin A_{n+1}), \\ \big(|\{i \in \{1, \ldots, n\}: a \in A_i\}| \text{ is even}\big) \wedge (a \in A_{n+1})\end{cases} \\ &\iff \vee \begin{cases} |\{i \in \{1, \ldots, n,n+1\}: a \in A_i\}| \text{ is odd}, \\ |\{i \in \{1, \ldots, n,n+1\}: a \in A_i\}| \text{ is odd}\end{cases} \\ &\iff |{i \\\\\Nen {1, \ldots, n,n+1\\\}: a \\Nen A_i\}||\Nse impar} |end{align}