Pretendemos demostrar que con $0\le k\le n$ se cumple la siguiente identidad:
$$\sum_{j=0}^k (-1)^{k-j} {2n+1\choose k-j} {n+j\brace j} = \sum_{j=0}^{n-k} (-1)^j {2n+1\choose j} {2n-k-j+1\brack n-k-j+1}.$$
Empezaremos por el LHS. El capítulo 6.2 sobre los números eulerianos de Matemáticas concretas de Knuth et al. propone la fórmula
$${n\brace m} = (-1)^{n-m+1} \frac{n!}{(m-1)!} \sigma_{n-m}(-m)$$
donde $\sigma_n(x)$ es un polinomio de Stirling y tenemos la identidad
$$\left(\frac{1}{z} \log\frac{1}{1-z}\right)^x = x \sum_{n\ge 0} \sigma_n(x+n) z^n.$$
Obtenemos
$$[z^{n-m}] \left(\frac{1}{z} \log\frac{1}{1-z}\right)^x = x \sigma_{n-m}(x+n-m)$$
y por lo tanto
$$[z^{n-m}] \left(\frac{1}{z} \log\frac{1}{1-z}\right)^{-n} = -n \sigma_{n-m}(-m)$$
lo que implica que para $n\ge m\ge 1$
$$\bbox[5px,border:2px solid #00A000]{ {n\brace m} = (-1)^{n-m} \frac{(n-1)!}{(m-1)!} [z^{n-m}] \left(\frac{1}{z} \log\frac{1}{1-z}\right)^{-n}.}$$
Esto da para el LHS
$$\sum_{j=1}^k (-1)^{k-j} {2n+1\choose k-j} (-1)^n \frac{(n+j-1)!}{(j-1)!} [z^n] \left(\frac{1}{z} \log\frac{1}{1-z}\right)^{-n-j} \\ = (-1)^{n-k+1} n! [z^n] \left(\frac{1}{z} \log\frac{1}{1-z}\right)^{-n-1} [w^{k-1}] (1+w)^{2n+1} \\ \times \sum_{j=1}^k {n+j-1\choose n} (-1)^{j-1} w^{j-1} \left(\frac{1}{z} \log\frac{1}{1-z}\right)^{-j+1}.$$
Ahora el extractor de coeficientes en $w$ impone el límite superior de la y podemos ampliar $j$ hasta el infinito, obteniendo
$$(-1)^{n-k+1} n! [z^n] \left(\frac{1}{z} \log\frac{1}{1-z}\right)^{-n-1} [w^{k-1}] (1+w)^{2n+1} \frac{1}{(1+w/(\frac{1}{z} \log\frac{1}{1-z}))^{n+1}} \\ = (-1)^{n-k+1} n! [z^n] [w^{k-1}] (1+w)^{2n+1} \frac{1}{(w+\frac{1}{z} \log\frac{1}{1-z})^{n+1}}.$$
Continuando,
$$ (-1)^{n-k+1} n! [z^n] [w^{n+k}] (1+w)^{2n+1} \frac{1}{(1+\frac{1}{w} \frac{1}{z} \log\frac{1}{1-z})^{n+1}} \\ = (-1)^{n-k+1} n! [z^n] [w^{n+k}] (1+w)^{2n+1} \sum_{q\ge 0} {n+q\choose n} (-1)^q \frac{1}{w^q} \left(\frac{1}{z} \log\frac{1}{1-z}\right)^q \\ = (-1)^{n-k+1} n! [z^n] \sum_{j=n+k}^{2n+1} {2n+1\choose j} {n+j-(n+k)\choose n} (-1)^{j-(n+k)} \\ \times \left(\frac{1}{z} \log\frac{1}{1-z}\right)^{j-(n+k)} \\ = (-1)^{n-k+1} n! [z^n] \sum_{j=0}^{n-k+1} {2n+1\choose j+n+k} {n+j\choose n} (-1)^{j} \left(\frac{1}{z} \log\frac{1}{1-z}\right)^{j} \\ = (-1)^{n-k+1} n! \sum_{j=0}^{n-k+1} {2n+1\choose j+n+k} {n+j\choose n} (-1)^{j} [z^{n+j}] \left(\log\frac{1}{1-z}\right)^{j} \\ = (-1)^{n-k+1} n! \sum_{j=0}^{n-k+1} {2n+1\choose j+n+k} {n+j\choose n} (-1)^{j} \\ \times \frac{j!}{(n+j)!} \times (n+j)! [z^{n+j}] \frac{1}{j!} \left(\log\frac{1}{1-z}\right)^{j} \\ = (-1)^{n-k+1} \sum_{j=0}^{n-k+1} {2n+1\choose j+n+k} (-1)^j {n+j\brack j} \\ = (-1)^{n-k+1} \sum_{j=0}^{n-k+1} {2n+1\choose 2n-j+1} (-1)^{n-k-j+1} {2n-k-j+1\brack n-k-j+1} \\ = \sum_{j=0}^{n-k+1} {2n+1\choose j} (-1)^j {2n-k-j+1\brack n-k-j+1}.$$
El número de Stirling es cero para $j=n-k+1$ y obtenemos por fin
$$\sum_{j=0}^{n-k} {2n+1\choose j} (-1)^j {2n-k-j+1\brack n-k-j+1}.$$
Este es el RHS y tenemos el reclamo.