En mis libros de texto, no puedo encontrar una solución para la ecuación diferencial de la forma $$y' = 3t*\sqrt y$$ ¿Cómo puedo resolver esta ecuación diferencial? ¿Puedo clasificar esta ecuación como una ecuación diferencial de Bernoulli, con $n=1/2$ ?
Respuestas
¿Demasiados anuncios?Desde
$$\frac{y'}{2\sqrt y}=\frac32t,$$
usted dibuja
$$\sqrt y=\frac34t^2+C,$$
$$y=\left(\frac34t^2+C\right)^2.$$
Tenga en cuenta que $y=0$ también es una solución.
También hay que tener en cuenta que una raíz cuadrada es positiva, por lo que $\dfrac34t^2+C>0$ debe aguantar. Cuando $C<0$ esto limita el dominio.
Dylan
Puntos
2446