Pregunta: Evaluar el determinante $\left| \begin{array}{cc} b^2c^2 & bc & b+c \\ c^2a^2 & ca & c+a \\ a^2b^2 & ab & a+b \\ \end{array} \right|$
Mi respuesta:
$\left| \begin{array}{cc} b^2c^2 & bc & b+c \\ c^2a^2 & ca & c+a \\ a^2b^2 & ab & a+b \\ \end{array} \right|= \left| \begin{array}{cc} b^2c^2 & bc & c \\ c^2a^2 & ca & a \\ a^2b^2 & ab & b \\ \end{array} \right| + \left| \begin{array}{cc} b^2c^2 & bc & b \\ c^2a^2 & ca & c \\ a^2b^2 & ab & a \\ \end{array} \right|= abc \left| \begin{array}{cc} bc^2 & c & 1 \\ ca^2 & a & 1 \\ ab^2 & b & 1 \\ \end{array} \right| +abc \left| \begin{array}{cc} b^2c & b & 1 \\ c^2a & c & 1 \\ a^2b & a & 1 \\ \end{array} \right|$
¿Cómo debo proceder a partir de aquí?