Esta es la cuestión:
Lo que he hecho:
(a) Demuestre que la ecuación de la normal a la parábola en un punto $(x_0,y_0)$ est $y = {-1\over 2kx_0} + kx_0^2 + {1\over 2k}$
$$ f(x) = kx^2 $$
$$ f( x_{0}) = kx_{0}^2 $$
$$ f'(x) = 2kx $$
$$ f'(x_{0}) = 2kx_0 $$
$$ Normal = -1/m $$
$$ m= {-1\over 2kx_0} $$
$$ y-y_1 = m (x-x_1) $$
$$ y-kx_0^2 = {-1\over 2kx_0}(x-x_0) $$
$$ y = {-1\over 2kx_0} + kx_0^2 + {1\over 2k} $$
(b) Demuestre que la ecuación de la recta normal con la coordenada y mínima es $ y = \frac{-\sqrt{2}}{2}x + {1\over k} $
$$ y = \frac{-\sqrt{2}}{2}x + {1\over k} $$
$$ {-1\over m} = \frac{-\sqrt{2}}{2} $$
$$ m = \sqrt{2} $$
$$ f'(x) = 2kx $$
$$ 2kx = \sqrt{2} $$
$$ x = {\sqrt{2}\over 2k} $$
$$ f({\sqrt{2}\over 2k}) = {1\over 2k}$$
$$ y-y_1 = m (x-x_1) $$
$$ y - {1\over 2k} = \frac{-\sqrt{2}}{2} (x-{\sqrt{2}\over 2k}) $$
$$ y = \frac{-\sqrt{2}}{2}x + {1\over k} $$
(c) Encuentra la ecuación de la normal que produce la menor área entre ella y la parábola, y halla esta área.
Esta es la parte en la que estoy atascado ¿cómo puedo saber qué línea producirá la menor superficie?