Dada una $6\times 6$ matriz de velocidad real $A$ la ecuación $$x^\top A x=1$$ define un hiperelipsoide.
Me gustaría representar la proyección de este elipsoide en un espacio 3D, a saber $(x_1,x_2,x_4)$ . Eliminé una de las variables usando la ecuación anterior, entonces numéricamente puedo generar los puntos en 6D y seleccionar su $(1,2,4)$ componentes, pero creo que hay un enfoque más eficiente...
¿Hay alguna forma sencilla de hacerlo?