2 votos

Resultados de la prueba KPSS e interpretación de la prueba DF

Estoy realizando una prueba Kwiatkowski-Phillips-Schmidt-Shin ( Prueba KPSS ) en R ( urca::ur.kpss ). Sin embargo, no estoy seguro de que se realice correctamente, porque los resultados son los mismos para cada columna de datos.

> dput(datSel)
structure(list(c = c(142.8163942, 143.5711365, 145.3485827, 142.0577145, 
139.4326176, 140.1236581, 138.6560282, 136.405036, 133.9337229, 
133.8785538, 132.0608441, 130.0866307, 120.1320237, 119.6368882, 
114.3312943, 117.5084111, 114.4960017, 112.9124518, 112.8185478, 
112.3047916, 106.632639, 106.2107158, 106.8455028, 106.3879556, 
104.3451786, 102.9085952, 101.0967783, 101.7858278, 101.0749044, 
102.6441976, 102.0666152, 100, 97.14084104, 97.49972913, 96.91453836, 
96.05132443, 94.98057971, 92.78373451, 92.67526281, 91.82430571, 
91.4153859, 89.51740671, 89.01587176, 84.62259911, 91.48598494, 
89.12053042, 90.02364352, 90.92496121, 89.42963565, 91.93886583, 
88.83918306, 90.39513509, 87.54571761, 91.3386451, 87.7836994, 
91.79178376, 87.56903138, 87.77875755, 89.29938784, 90.88084014
), d = c(17703.7, 17599.8, 17328.2, 17044, 17078.3, 16872.3, 
16619.2, 16502.4, 16332.5, 16268.9, 16094.7, 15956.5, 15785.3, 
15587.1, 15460.9, 15238.4, 15230.2, 15057.7, 14888.6, 14681.1, 
14566.5, 14384.1, 14340.4, 14383.9, 14549.9, 14843, 14813, 14668.4, 
14685.3, 14569.7, 14422.3, 14233.2, 14066.4, 13908.5, 13799.8, 
13648.9, 13381.6, 13205.4, 12974.1, 12813.7, 12562.2, 12367.7, 
12181.4, 11988.4, 11816.8, 11625.1, 11370.7, 11230.1, 11103.8, 
11037.1, 10934.8, 10834.4, 10701.3, 10639.5, 10638.4, 10508.1, 
10472.3, 10357.4, 10278.3, 10031), e = c(71.0619, 70.9383, 71.162, 
71.138, 71.2286, 71.5095, 71.565, 71.3246, 71.4963, 71.3738, 
71.4276, 71.3065, 71.0246, 71.3244, 71.0619, 70.9811, 71.2149, 
70.8342, 70.5568, 70.5444, 70.3286, 70.179, 70.2555, 70.5103, 
70.8038, 70.6748, 70.9769, 70.6988, 70.2125, 70.1661, 69.6284, 
69.5613, 68.9837, 68.8606, 68.4223, 67.963, 67.6293, 67.5905, 
67.1857, 67.1248, 66.7075, 66.5857, 66.4303, 66.2826, 68.7514, 
68.8897, 69.0824, 68.9718, 68.7927, 68.6387, 68.8053, 68.7286, 
68.4141, 68.2357, 68.4785, 68.4171, 68.4782, 68.3978, 68.5344, 
68.4772), f = c(2160.080078, 2203.939941, 2500.850098, 2523.820068, 
2546.54, 2528.449951, 2223.97998, 2352.01001, 2401.21, 2089.73999, 
1975.349976, 2159.060059, 1891.68, 1947.849976, 2766.72998, 2882.179932, 
2947.24, 2541.629883, 2278.800049, 2634, 2495.56, 2637.280029, 
2098.649902, 1696.619995, 1750.83, 2767.76001, 3943.149902, 3765.909912, 
4512.98, 4527.299805, 4869.259766, 4645.5, 4463.47, 3868.27002, 
3745.719971, 4139.830078, 3667.03, 3457.449951, 3049.909912, 
2632.899902, 2431.38, 2042.869995, 1989.400024, 1866.76001, 1545.15, 
1351.890015, 1305.709961, 1163.109985, 1150.05, 1070.209961, 
1243.069946, 1289.16, 1140.36, 1084.069946, 1206.819946, 1186.540039, 
1073.3, 1161.160034, 1129.579956, 1130.069946), g = c(5.7393, 
5.7072, 5.6126, 5.6411, 5.5114, 5.4551, 5.1613, 5.4087, 5.0227, 
5.2039, 4.9501, 4.5008, 4.9143, 4.1372, 4.5604, 4.7979, 4.5454, 
4.8863, 5.0496, 4.9757, 5.4705, 5.8403, 5.4328, 4.6986, 4.4481, 
4.1385, 3.8379, 4.2183, 4.5429, 5.03, 5.1821, 4.8269, 5.0469, 
5.1054, 5.3959, 5.5413, 5.8139, 5.8611, 5.8396, 5.1964, 5.6386, 
5.6615, 5.5751, 5.2251, 4.4682, 4.262, 4.3487, 4.1654, 3.9651, 
3.9105, 3.7954, 4.1595, 3.8174, 3.6349, 3.6119, 3.4004, 3.366, 
3.3953, 3.3621, 3.9338), h = c(88.548662, 90.58853576, 91.32289522, 
91.56290683, 108.4682322, 93.86541244, 100.3414441, 91.98328561, 
95.53905246, 102.6461104, 97.9505881, 108.912959, 114.4931447, 
108.0431511, 98.58118608, 107.9440773, 99.41777306, 104.868483, 
100.3338425, 98.06667712, 100.6353811, 100.6491181, 106.4241282, 
79.3180456, 80.40781739, 85.35716451, 102.9110831, 88.99947733, 
99.38928861, 87.57579615, 87.49264945, 90.29013182, 92.13878645, 
90.15141711, 83.90950016, 97.24552675, 93.38024804, 94.16745797, 
98.90106448, 94.73366108, 104.1079291, 98.20132446, 97.70974526, 
91.86162897, 101.5381154, 94.56938821, 86.91581151, 87.16428746, 
87.35114009, 85.0634706, 86.2179337, 82.34156437, 79.86840987, 
84.20717658, 85.29553997, 90.94079268, 92.84823122, 88.90113767, 
88.05502443, 92.38787475), i = c(363.81, 361.19, 362.35, 359.09, 
359.31, 355.8, 356.64, 353.83, 353.49, 348.92, 348.8, 344.85, 
343.48, 340.75, 341.1, 335.72, 331.29, 328.21, 328.95, 325.92, 
324.83, 322.83, 323.18, 321.66, 322.94, 323.14, 322.89, 318.34, 
315.85, 311.61, 311.3, 308.34, 306.1, 305.64, 305.58, 302.91, 
301.64, 300.24, 299.54, 298.58, 296.4, 293.87, 293.35, 291.61, 
289.43, 288.03, 287.69, 287.6, 285.95, 284.8, 284.63, 282.62, 
281.24, 280, 280.09, 277.65, 275.73, 273.12, 272.78, 272.25), 
    j = c(307.5, 308.6, 308.9, 309.7, 311.1, 311.6, 311.6, 313.9, 
    314.9, 314.8, 314.9, 314.5, 313.4, 313, 312.9, 309, 304.5, 
    302.76, 299.28, 293.44, 291.52, 291.71, 290.61, 294.17, 297.74, 
    300.02, 295.91, 292.9, 289.23, 287.49, 285.86, 283.84, 281.1, 
    280.37, 278.63, 275.44, 273.88, 273.24, 274.6, 275.15, 269.77, 
    267.66, 264.29, 262.27, 260.53, 260.52, 261.54, 263.27, 261.45, 
    261.81, 261.99, 261.35, 262.64, 264.74, 265.56, 265.47, 267.3, 
    265.47, 262.64, 260.72), k = c(103.3086091, 102.9085757, 
    103.6086341, 107.5089591, 107.9089924, 108.9090758, 104.3086924, 
    97.80815068, 104.8087341, 108.0090008, 103.4086174, 104.5087091, 
    105.8088174, 100.308359, 102.6085507, 100.4083674, 96.80806734, 
    99.50829236, 102.708559, 100.7083924, 103.0485874, 103.9186599, 
    104.7887324, 105.0787566, 103.3386116, 104.0186682, 102.5685474, 
    112.4193683, 105.8488207, 104.5987166, 107.3989499, 108.6490541, 
    107.2989416, 106.2388532, 101.3084424, 98.02816901, 102.1785149, 
    97.83815318, 98.70822569, 88.85740478, 92.66772231, 95.36794733, 
    91.4076173, 87.54729561, 89.66747229, 87.73731144, 87.34727894, 
    90.9275773, 78.26652221, 80.29669139, 79.90665889, 77.68647387, 
    77.59646637, 78.46653888, 77.68647387, 77.01641803, 84.45703809, 
    77.97649804, 76.72639387, 77.88649054), l = c(109.1, 109.1, 
    108.8, 108.2, 107.6, 107.2, 107.3, 106.7, 106.4, 106, 105.9, 
    104.9, 103.8, 103.5, 103, 102.3, 101.3, 100.5, 99.6, 98.6, 
    97.43314, 96.68301, 95.84954, 95.18276, 94.76602, 94.01589, 
    92.84903, 91.18208, 89.76517, 89.18174, 88.51496, 87.76484, 
    86.68132, 85.93119, 85.18107, 84.51429, 83.76416, 83.43077, 
    83.26407, 82.93068, 82.46215, 82.14979, 81.83744, 81.05654, 
    80.43183, 80.35374, 80.27565, 79.9633, 79.72903, 79.57285, 
    79.57285, 79.26049, 79.02623, 79.10432, 79.02623, 78.71387, 
    78.4796, 78.24534, 77.93298, 77.69871), m = c(108.26667, 
    107.96667, 107.46667, 106.76667, 106.66667, 106.6, 106.43333, 
    105.83333, 105, 104.8, 104.46667, 103.46667, 102.4, 102.56667, 
    102.2, 101.96667, 100.77774, 100.47032, 100.41443, 98.48607, 
    97.47997, 97.22844, 96.55771, 96.52976, 96.58566, 98.2066, 
    96.58566, 94.0704, 92.00231, 92.03026, 91.86257, 90.40932, 
    89.26348, 88.84427, 87.19538, 85.32292, 84.28887, 83.61814, 
    83.72993, 83.59019, 83.22324, 82.61167, 82.09794, 80.36107, 
    78.86882, 78.42849, 77.93923, 77.05856, 76.39806, 76.34913, 
    76.22682, 75.39507, 75.05259, 75.24829, 75.12598, 74.34316, 
    74.04961, 73.60927, 73.21786, 72.67968), n = c(108.56667, 
    108.56667, 108.23333, 107.3, 107.13333, 106.8, 106.63333, 
    105.76667, 105.46667, 105.06667, 104.8, 103.23333, 102.5, 
    102.6, 102.36667, 102.1, 100.5226, 100.32976, 100.71544, 
    98.29121, 97.35458, 97.43723, 96.80362, 96.85872, 96.36285, 
    98.75953, 97.05155, 93.6907, 91.12874, 91.29403, 91.29403, 
    89.44831, 88.07091, 87.57505, 85.86707, 83.96626, 83.4153, 
    82.64396, 82.47867, 82.17564, 82.00498, 81.76645, 81.12244, 
    79.59587, 78.02161, 77.73538, 77.18677, 76.11341, 75.39783, 
    75.42168, 75.04004, 73.94283, 73.94283, 74.08594, 73.7043, 
    72.67864, 72.2493, 71.89151, 71.43831, 70.62732), o = c(57844L, 
    57844L, 57667L, 57168L, 57080L, 56904L, 56813L, 56353L, 56193L, 
    55980L, 55838L, 55003L, 54612L, 54666L, 54541L, 54398L, 53567L, 
    53465L, 53670L, 52379L, 51878L, 51923L, 51585L, 51615L, 51351L, 
    52629L, 51718L, 49927L, 48562L, 48649L, 48640L, 47666L, 46932L, 
    46668L, 45758L, 44745L, 44428L, 44046L, 43944L, 43779L, 43690L, 
    43563L, 43219L, 42407L, 41567L, 41416L, 41123L, 40551L, 40170L, 
    40182L, 39979L, 39395L, 39394L, 39471L, 39267L, 38721L, 38514L, 
    38309L, 38061L, 37617L), p = c(59373L, 59209L, 58935L, 58551L, 
    58496L, 58458L, 58368L, 58039L, 57582L, 57472L, 57289L, 56742L, 
    56156L, 56248L, 56046L, 55919L, 55243L, 55075L, 55045L, 53988L, 
    53436L, 53298L, 52930L, 52915L, 52947L, 53834L, 52946L, 51567L, 
    50433L, 50449L, 50357L, 49557L, 48932L, 48671L, 47722L, 46772L, 
    46213L, 45865L, 45919L, 45826L, 45612L, 45276L, 44994L, 44041L, 
    43225L, 42983L, 42715L, 42232L, 41870L, 41843L, 41777L, 41321L, 
    41132L, 41240L, 41172L, 40743L, 40587L, 40352L, 40127L, 39814L
    ), q = c(96819L, 96819L, 96090L, 94632L, 94632L, 94632L, 
    93727L, 91917L, 91917L, 91917L, 90779L, 88503L, 88416L, 88416L, 
    88270L, 87978L, 87996L, 87996L, 87566L, 86706L, 86706L, 86706L, 
    85794L, 83970L, 83970L, 83970L, 83007L, 81081L, 81081L, 81081L, 
    80423L, 79107L, 79107L, 79107L, 78321L, 76749L, 76533L, 76533L, 
    75983L, 74883L, 74883L, 74883L, 74575L, 73959L, 73959L, 73959L, 
    73167L, 71583L, 71583L, 71583L, 70858L, 69408L, 69408L, 69408L, 
    68594L, 66966L, 66831L, 66342L, 65853L, 64875L), r = c(144.5, 
    146.5, 147.3, 143.3, 140.1, 142.8, 141.2, 140.2, 137.8, 137.4, 
    136.6, 137.6, 125.5, 125.7, 120.5, 124.2, 121.5, 119.8, 121.3, 
    122, 114.1, 114.4, 114.7, 116.1, 112.8, 111.8, 110.2, 111.7, 
    112.2, 113.7, 112.7, 110.5, 107, 107.5, 108, 107.1, 106.7, 
    103.3, 104.2, 104.3, 104.1, 101.3, 100.5, 94.3, 105.6, 101, 
    102, 103.1, 101.4, 105.5, 100.5, 102.8, 100.5, 105.1, 98.8, 
    105.1, 98.2, 98.2, 100.6, 103), s = c(132.2, 133.9, 133.5, 
    126, 125, 122.6, 122.6, 123.8, 124.5, 120.2, 120.2, 123.5, 
    105.2, 116.4, 111.5, 116.4, 116.1, 114.3, 117, 117.9, 107.1, 
    104.5, 110.6, 110.5, 104.2, 105.4, 106.2, 110.3, 106.8, 111.4, 
    111.2, 108.5, 93.5, 101.5, 101.4, 101.3, 101.7, 96.8, 97.3, 
    100, 97.5, 99.4, 94.8, 93.8, 101.9, 97.4, 97.7, 98.4, 100.6, 
    100.1, 96.3, 98.1, 93.4, 99.3, 97.3, 99.6, 99.2, 97.8, 100.1, 
    102.9), t = c(149.8, 151.9, 153.2, 150.7, 146.5, 151.5, 149.2, 
    147.3, 143.6, 144.8, 143.6, 143.7, 134.1, 129.7, 124.3, 127.5, 
    123.7, 122.2, 123.1, 123.8, 117.1, 118.6, 116.4, 118.4, 116.4, 
    114.6, 111.9, 112.2, 114.5, 114.6, 113.4, 111.3, 112.8, 110.1, 
    110.8, 109.5, 108.8, 106.1, 107.1, 106.1, 107, 102.1, 103, 
    94.5, 107.2, 102.5, 103.9, 105.1, 101.7, 107.8, 102.4, 104.8, 
    103.6, 107.6, 99.5, 107.4, 97.8, 98.4, 100.8, 103), u = c(155.2, 
    157.6, 159, 156.5, 151.4, 155, 152, 149, 146.4, 147.9, 146.6, 
    146.3, 137.1, 131.1, 124.5, 127.5, 123.1, 121.9, 123, 123.5, 
    116.4, 117.7, 116.4, 118.1, 116.5, 113.7, 110.2, 111, 113.9, 
    113.9, 113.6, 110.9, 113.2, 109.9, 111.7, 109.7, 110.1, 106.3, 
    107.4, 105.9, 107.2, 101.6, 103.8, 94.1, 108.4, 102.7, 104.1, 
    105.1, 101.5, 108.8, 102.3, 105.4, 103, 107.2, 99.3, 107.6, 
    97.4, 97.6, 101.2, 103.9), v = c(112.6, 112.7, 113.6, 110.7, 
    113.4, 127.1, 130.1, 135.7, 123.7, 123.2, 123, 125.5, 113.5, 
    120.2, 123.3, 128, 128.2, 124.6, 124, 125.8, 122.2, 124.8, 
    116.6, 120.4, 115.9, 120.6, 124, 120.6, 119, 120.1, 111.6, 
    114, 110.2, 111.6, 104.5, 107.9, 100.4, 104.7, 105, 106.9, 
    105.1, 105.8, 97.3, 96.6, 99.1, 101.1, 102.5, 105.2, 103, 
    101, 102.7, 100.5, 107.4, 110.1, 101.3, 105.7, 100.3, 104.1, 
    98.4, 97.2)), .Names = c("c", "d", "e", "f", "g", "h", "i", 
"j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v"
), row.names = c(NA, -60L), class = "data.frame")
> resKpssT <- lapply(datSel,function(x){ summary(ur.kpss(x,type="tau")) })
> (resKpssT)
$c

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.3717 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

$d

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.1771 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

$e

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.158 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

$f

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.2767 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

$g

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.1737 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

$h

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.0815 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

$i

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.2921 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

$j

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.1445 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

$k

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.3354 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

$l

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.3125 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

$m

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.1857 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

$n

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.1818 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

$o

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.1822 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

$p

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.1847 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

$q

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.0801 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

$r

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.3628 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

$s

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.3033 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

$t

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.3514 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

$u

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.3544 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

$v

####################### 
# KPSS Unit Root Test # 
####################### 

Test is of type: tau with 3 lags. 

Value of test-statistic is: 0.1649 

Critical value for a significance level of: 
                10pct  5pct 2.5pct  1pct
critical values 0.119 0.146  0.176 0.216

> cv.kpss.tau <- sapply(resKpssT, function(x) x@cval)
> (cv.kpss.tau)
         c     d     e     f     g     h     i     j     k     l     m     n     o     p     q     r     s     t
[1,] 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119
[2,] 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146
[3,] 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176
[4,] 0.216 0.216 0.216 0.216 0.216 0.216 0.216 0.216 0.216 0.216 0.216 0.216 0.216 0.216 0.216 0.216 0.216 0.216
         u     v
[1,] 0.119 0.119
[2,] 0.146 0.146
[3,] 0.176 0.176
[4,] 0.216 0.216

Se puede ver que todos los valores críticos son iguales y predican los valores críticos. Por lo tanto, todos los datos deben ser no estacionarios.

Sin embargo, no creo que esto sea correcto, ya que al observar, por ejemplo, las series temporales, q .

enter image description here

¿Alguna sugerencia de lo que estoy haciendo mal?

ACTUALIZACIÓN

He creado una tabla de mis series para los valores de la prueba KPSS.

enter image description here

¿Es esto correcto?

También pasé mis resultados por una prueba de Dick Fuller, que básicamente me muestra resultados complementarios:

enter image description here

Mi fórmula de Excel está en pseudocódigo:

=IF("calculated p-value" <= "critical value"; H1 ; H0 )

Aquí puedes encontrar una hoja de Excel, que estoy utilizando para los cálculos:

Hoja de cálculo de Google

Las dos fotos me muestran resultados complementarios. Por lo tanto, supongo que estoy haciendo algo mal.

¿Alguna recomendación de lo que estoy haciendo mal?

2voto

einverne Puntos 126

Los valores críticos son los valores tabulados de la distribución teórica de la estadística de la prueba bajo la hipótesis nula. En este caso se está utilizando la versión de la prueba en la que la hipótesis nula es la estacionariedad en torno a una tendencia determinista. Los valores críticos para los niveles nominales 0,10, 0,05, 0,025 y 0,01 figuran en la tabla I del papel original .

Los valores críticos son devueltos por ur.kpps para que pueda comparar fácilmente el valor del estadístico de prueba obtenido con sus datos con los valores críticos teóricos.

Por ejemplo, dado un nivel de 0,05: para la serie c la hipótesis nula se rechaza porque $0.3717 > 0.146$ para la serie d la nula se rechaza también porque $0.1771 > 0.146$ . A partir de estos resultados, concluimos que, al nivel de significación del 5%, estas series no son estacionarias en torno a una tendencia determinista.

La hipótesis nula no se rechaza para la serie h porque $0.0815 < 0.146$ . Del mismo modo, para la serie q tenemos $0.0801 < 0.146$ . Por lo tanto, en estas series no se puede rechazar la hipótesis de estacionariedad en torno a una tendencia determinista al nivel de significación del 5%. La prueba de Dickey y Fuller aumentada podría obtenerse para estas series para comprobar si se rechaza la nula de una raíz unitaria.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X