$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ $\ds{\bbox[5px,#ffd]{\int_{0}^{1}{\ln\pars{x}\ln\pars{1 + x} \over 1-x}\,\dd x = \zeta\pars{3} - {3 \over 2}\,\ln\pars{2}\zeta\pars{2}}:\ \approx 0.5082\ {\Large ?}}$ .
\begin{align} &\bbox[5px,#ffd]{\int_{0}^{1}{\ln\pars{x}\ln\pars{1 + x} \over 1 - x}\,\dd x} = {1 \over 2}\int_{0}^{1}{2\ln\pars{x}\ln\pars{1 + x} \over 1 - x}\,\dd x \\[5mm] = &\ {1 \over 2}\int_{0}^{1}{\ln^{2}\pars{x} + \ln^{2}\pars{1 + x} - \bracks{\ln\pars{x} - \ln\pars{1 + x}}^{\, 2} \over 1 - x}\,\dd x \\[5mm] = &\ {1 \over 2}\int_{0}^{1}{\ln^{2}\pars{x} \over 1 - x}\,\dd x + {1 \over 2}\int_{0}^{1}{\ln^{2}\pars{1 + x} - \ln^{2}\pars{2} \over 1 - x}\,\dd x \\[2mm] & \!\!\!\! -{1 \over 2}\int_{0}^{1} \bracks{\ln^{2}\pars{x \over x + 1} - \ln^{2}\pars{2}} \,{\dd x \over 1 - x} \end{align} En el $\underline{second}$ integral voy a hacer el cambio $\ds{1 + x \mapsto 2x}$ mientras que $\ds{x/\pars{x + 1} \mapsto x}$ en el $\underline{third}$ uno. Entonces, \begin{align} &\bbox[5px,#ffd]{\int_{0}^{1}{\ln\pars{x}\ln\pars{1 + x} \over 1 - x}\,\dd x} \\[5mm] = &\ {1 \over 2}\int_{0}^{1}{\ln^{2}\pars{x} \over 1 - x}\,\dd x + {1 \over 2}\int_{1/2}^{1}{\ln^{2}\pars{2x} - \ln^{2}\pars{2} \over 1 - x}\,\dd x \\[2mm] & \!\!\!\! -{1 \over 2}\bracks{% -\int_{0}^{1/2}{\ln^{2}\pars{x} - \ln^{2}\pars{2} \over 1 - x} \,\dd x + 2\int_{0}^{1/2}{\ln^{2}\pars{x} - \ln^{2}\pars{2} \over 1 - 2x} \,\dd x} \\[5mm] = &\ {1 \over 2}\int_{0}^{1}{\ln^{2}\pars{x} \over 1 - x}\,\dd x + {1 \over 2}\int_{1/2}^{1}{\ln^{2}\pars{2x} - \ln^{2}\pars{2} \over 1 - x}\,\dd x \\[2mm] & \!\!\!\! + \bracks{% {1 \over 2}\int_{0}^{1/2}{\ln^{2}\pars{x} \over 1 - x}\,\dd x - {1 \over 2}\ln^{3}\pars{2} - {1 \over 2}\int_{0}^{1}{\ln^{2}\pars{x/2} - \ln^{2}\pars{2} \over 1 - x}\,\dd x} \\[5mm] & \stackrel{\mrm{IBP}}{=}\,\,\, -\int_{0}^{1}\mrm{Li}_{2}'\pars{x}\ln\pars{x}\,\dd x + \bracks{% {1 \over 2}\ln^{3}\pars{2} -\int_{1/2}^{1}\mrm{Li}_{2}'\pars{x}\ln\pars{2x}\,\dd x} \\[2mm] & \phantom{\stackrel{\mrm{IBP}}{=}\,\,\,\,\,} + \bracks{{1 \over 2}\ln^{3}\pars{2} -\int_{0}^{1/2}\mrm{Li}_{2}'\pars{x}\ln\pars{x}\,\dd x} \\[2mm]& \phantom{\stackrel{\mrm{IBP}}{=}\,\,\,\,\,} -{1 \over 2}\ln^{3}\pars{2} + \int_{0}^{1}\mrm{Li}_{2}'\pars{x}\ln\pars{x \over 2}\,\dd x \\[5mm] & \stackrel{\mrm{IBP}}{=}\,\,\, \int_{0}^{1}\mrm{Li}_{3}'\pars{x}\,\dd x + {1 \over 2}\ln^{3}\pars{2} -\mrm{Li}_{2}\pars{1}\ln\pars{2} + \int_{1/2}^{1}\mrm{Li}_{3}'\pars{x}\,\dd x \\[2mm] & \phantom{\stackrel{\mrm{IBP}}{=}\,\,\,\,\,} -\mrm{Li}_{2}\pars{1 \over 2}\ln\pars{1 \over 2} + \int_{0}^{1/2}\mrm{Li}_{3}'\pars{x}\,\dd x +\mrm{Li}_{2}\pars{1}\ln\pars{1 \over 2} \\[2mm] & \phantom{\stackrel{\mrm{IBP}}{=}\,\,\,\,\,} -\int_{0}^{1}\mrm{Li}_{3}'\pars{x}\,\dd x \\[5mm] & \stackrel{\mrm{IBP}}{=}\,\,\, \zeta\pars{3} + {1 \over 2}\ln^{3}\pars{2} -2\mrm{Li}_{2}\pars{1}\ln\pars{2} + \zeta\pars{3} - \mrm{Li}_{3}\pars{1 \over 2} \\[2mm] & \phantom{\stackrel{\mrm{IBP}}{=}\,\,\,\,\,} + \mrm{Li}_{2}\pars{1 \over 2}\ln\pars{2} + \mrm{Li}_{3}\pars{1 \over 2} - \zeta\pars{3} \\[5mm] & \stackrel{\mrm{IBP}}{=}\,\,\, {1 \over 2}\ln^{3}\pars{2} -2\,\mrm{Li}_{2}\pars{1}\ln\pars{2} + \zeta\pars{3} + \mrm{Li}_{2}\pars{1 \over 2}\ln\pars{2} \label{1}\tag{1} \\[5mm] & \phantom{\stackrel{\mrm{IBP}}{=}\,\,\,\,\,} = \bbx{\large\zeta\pars{3} - {3 \over 2}\,\ln\pars{2}\zeta\pars{2}} \approx 0.5082\label{2}\tag{2} \end{align}
En ( \ref {1}) y ( \ref {2}) He utilizado $\ds{\mrm{Li}_{2}\pars{1} = \zeta\pars{2} = \pi^{2}/6}$ y el valores conocidos de $\ds{\mrm{Li}_{2}\pars{1/2}}$ y $\ds{\mrm{Li}_{3}\pars{1/2}}$ .