$\newcommand{\+}{^{\dagger}}% \newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}% \newcommand{\dd}{{\rm d}}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\fermi}{\,{\rm f}}% \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\half}{{1 \over 2}}% \newcommand{\ic}{{\rm i}}% \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow}% \newcommand{\isdiv}{\,\left.\right\vert\,}% \newcommand{\ket}[1]{\left\vert #1\right\rangle}% \newcommand{\ol}[1]{\overline{#1}}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ $$ u\pars{a,\phi} = \sum_{k = 1}^{\infty}A_{k}a^{-2k}\sin\pars{2k\phi} $$ $$ u_{0}\int_{0}^{\pi/4}\sin\pars{2q\phi}\,\dd\phi - u_{0}\int_{\pi/4}^{\pi/2}\sin\pars{2q\phi}\,\dd\phi = \sum_{k = 1}^{\infty}A_{k}a^{-2k} \overbrace{\int_{0}^{\pi/2}\sin\pars{2q\phi}\sin\pars{2k\phi}\,\dd\phi} ^{\ds{{1 \over 4}\,\pi\,\delta_{qk}}} $$
\begin{align} \\[3mm] &{1 \over 4}\,\pi A_{q}a^{-2q} =u_{0}\int_{0}^{\pi/4}\sin\pars{2q\phi}\,\dd\phi - u_{0}\int_{\pi/4}^{\pi/2}\sin\pars{2q\phi}\,\dd\phi \\[3mm]&= u_{0}\int_{0}^{\pi/4}\sin\pars{2q\phi}\,\dd\phi - u_{0}\int_{-\pi/4}^{0}\sin\pars{2q\phi + q\pi}\,\dd\phi \\[3mm]&= u_{0}\int_{0}^{\pi/4}\sin\pars{2q\phi}\,\dd\phi - u_{0}\pars{-1}^{q}\int_{-\pi/4}^{0}\sin\pars{2q\phi}\,\dd\phi = u_{0}\bracks{1 - \pars{-1}^{q}}\int_{0}^{\pi/4}\sin\pars{2q\phi}\,\dd\phi \\[3mm]&= u_{0}\bracks{1 - \pars{-1}^{q}}{-\cos\pars{\pi q/2} + 1\over 2q} =u_{0}\,{1 - \pars{-1}^{q} \over q}\sin^{2}\pars{\pi q \over4} \end{align}
$A_{q}$ se desvanece incluso para $q$ : \begin{align} {1 \over 4}\,\pi a^{-4k - 2}A_{2k + 1} &= {2u_{0} \over 2k + 1}\,\sin^{2}\pars{{\pi \over 4}\bracks{2k + 1}} \\[3mm]&= {2u_{0} \over 2k + 1}\,\bracks{% \sin\pars{\pi k \over 2}\cos\pars{\pi \over 4} + \cos\pars{\pi k \over 2}\sin\pars{\pi \over 4}}^{2} ={u_{0} \over 2k + 1} \\[3mm] A_{2k + 1} & = {4u_{0}/\pi \over 2k + 1}\,a^{4k + 2} \end{align}
$$\color{#0000ff}{\large% u\pars{r,\phi} = {4u_{0} \over \pi}\sum_{k = 0}^{\infty}{1 \over 2k + 1}\pars{a \over r}^{4k + 2} \sin\pars{2\bracks{2k + 1}\phi}} $$
También $$ u\pars{r,\phi} = -\,{4u_{0} \over \pi}\Im\sum_{k = 0}^{\infty}{1 \over 2k + 1} \pars{{a \over r}\,\expo{-\ic\phi}}^{4k + 2} = -\,{4u_{0} \over \pi}\Im\fermi\pars{{a \over r\expo{\ic\phi}}} $$ donde $\fermi\pars{z} = \sum_{k = 0}^{\infty}z^{4k + 2}/\pars{2k + 1}$ . Entonces, \begin{align} \fermi'\pars{z} &= 2\sum_{k = 0}^{\infty}z^{4k + 1} = 2\,{z \over 1 - z^{4}} = {z \over z^{2} + 1} - {z \over z^{2} - 1} \\ \Im\fermi\pars{z}&=\half\,\ln\pars{z^{2} + 1 \over z^{2} - 1} =\half\,\Im\ln\pars{1 + z^{-2} \over 1 - z^{-2}} =\half\,\Im\ln\pars{% 1 + \bracks{x + \ic y}^{2}/a^{2} \over 1 - \bracks{x + \ic y}^{2}/a^{2}} \\[3mm]&=\half\,\Im\ln\pars{% x^{2} - y^{2} + a^{2} + 2xy\ic \over -x^{2} + y^{2} + a^{2} - 2xy\ic} \\[3mm]&=\half\,\Im\ln\pars{% \bracks{x^{2} - y^{2} + a^{2} + 2xy\ic}\bracks{-x^{2} + y^{2} + a^{2} + 2xy\ic}} \\[3mm]&= \half\,\Im\ln\pars{% -\bracks{x^{2} - y^{2}}^{2} + a^{4} - 4x^{2}y^{2} + 4a^{2}xy\ic} \\[3mm]&= \half\,\arctan\pars{% 4a^{2}xy \over -\bracks{x^{2} - y^{2}}^{2} + a^{4} - 4x^{2}y^{2}} \end{align}
En coordenadas cartesianas: $$\color{#0000ff}{\large% u\pars{x,y} =-\,{2u_{0} \over \pi}\,\arctan\pars{% 4a^{2}xy \over -\bracks{x^{2} - y^{2}}^{2} + a^{4} - 4x^{2}y^{2}}} $$
$\large\tt\mbox{Please, check for some typo !!!}$ .