Reescribir como
$$\int_{-\pi/2}^{\pi/2} \frac{dx}{1+e^{b x}} \frac1{1+\cot^{2012}{x}}$$
donde $b=\log{\alpha}$. Esta integral es igual a
$$\underbrace{\int_{-\pi/2}^0 \frac{dx}{1+e^{b x}} \frac1{1+\cot^{2012}{x}}}_{x \mapsto -x} + \int_0^{\pi/2} \frac{dx}{1+e^{b x}} \frac1{1+\cot^{2012}{x}}$$
o
$$\int_0^{\pi/2} \frac{dx}{1+\cot^{2012}{x}}\underbrace{\left (\frac1{1+e^{b x}} + \frac1{1+e^{-b x}} \right )}_{\text{this is} = 1} = \int_0^{\pi/2} \frac{dx}{1+\cot^{2012}{x}}$$
o
$$\int_0^{\pi/2} \frac{dx}{1+\tan^{2012}{x}}$$
que por este resultado, es $\pi/4$.