$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \mathcal{S} & \equiv \sum_{n = 1}^{\infty}{\sin\pars{n\pi y}\sin\pars{n\pi x} \over n^{2}\pi^{2}} = \sum_{n = 1}^{\infty}xy\,\mrm{sinc}\pars{n\pi\verts{y}}\,\mrm{sinc}\pars{n\pi\verts{x}} \\[5mm] & = -xy + xy\sum_{n = 0}^{\infty} \mrm{sinc}\pars{n\pi\verts{y}}\,\mrm{sinc}\pars{n\pi\verts{x}} \end{align}
La serie se evalúa con el Fórmula Abel-Plana cuando $\ds{\verts{x} + \verts{y} < 2}$ como explicaré más adelante. En cualquier otro caso, podemos utilizar las propiedades periódicas del $\ds{\sin}$ -función de representación de los argumentos " dentro de la región convergente ". La fórmula Abel-Plana se puede utilizar cuando la siguiente expresión se desvanece como $\ds{\Im\pars{z} \to \pm\infty}$ :
\begin{align} &xy\,\mrm{sinc}\pars{z\pi\verts{y}}\,\mrm{sinc}\pars{z\pi\verts{x}} \expo{-2\pi\verts{\Im\pars{z}}} \\[5mm] \stackrel{\mrm{as}\ \Im\pars{z}\ \to\ \pm\infty}{\sim}\,\,\,& \pm\,{\mrm{sgn}\pars{xy} \over 4\pi^{2}} \exp\pars{\rule{0pt}{4mm} -\bracks{\rule{0pt}{6mm}2 - \verts{x} - \verts{y}}\pi\verts{\Im\pars{z}}} \,\,\,\stackrel{\mrm{as}\ \Im\pars{z}\ \to\ \pm\infty}{\to}\,\,\, {\Large 0} \\[2mm] &\ \bbx{\mbox{when}\ \verts{x} + \verts{y} < 2} \end{align} Entonces, \begin{align} \mathcal{S} & \equiv \sum_{n = 1}^{\infty}{\sin\pars{n\pi y}\sin\pars{n\pi x} \over n^{2}\pi^{2}} \\[5mm] & = -xy + xy\int_{0}^{\infty}\mrm{sinc}\pars{n\pi\verts{y}} \,\mrm{sinc}\pars{n\pi\verts{x}}\dd n + xy\bracks{{1 \over 2}\mrm{sinc}\pars{n\pi\verts{y}}\,\mrm{sinc}\pars{n\pi\verts{x}}} _{\ n\ =\ 0} \\[5mm] & = -\,{1 \over 2}\,xy + {xy \over \pi}\int_{0}^{\infty}\mrm{sinc}\pars{n\verts{y}} \,\mrm{sinc}\pars{n\verts{x}}\dd n \\[5mm] & = -\,{1 \over 2}\,xy + {xy \over \pi}\braces{\pi\,{\verts{x} + \verts{y} - \verts{\rule{0pt}{5mm}\verts{x} - \verts{y}} \over 4\verts{x}\verts{y}}} \\[5mm] & = \bbx{\mrm{sgn}\pars{x}\mrm{sgn}\pars{y} \min\braces{\verts{x},\verts{y}} - xy \over 2} \end{align}