Dada la función $$f(s)= 2^{ \frac{s}{6} }\frac{\Gamma \left( \frac{s+1}{3/2} \right)}{ \Gamma \left( \frac{s+1}{2} \right)},$$
podemos encontrar la transformada inversa de Mellin para $f(s)$ ? Así es, $$\frac{1}{2 \pi i}\int_{- i\infty}^{ i\infty} 2^{ \frac{s}{6} }\frac{\Gamma \left( \frac{s+1}{3/2} \right)}{ \Gamma \left( \frac{s+1}{2} \right)} x^{-s-1 } ds$$ para $x>0$ .
Me preguntaba si la integral se puede expresar en términos de funciones hipergeométricas. Por ejemplo, esto es muy similar a la Mellin-Barnes integral \begin{align} {}_2F_1(a,b;c;z) =\frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \frac{\Gamma(a+s)\Gamma(b+s)\Gamma(-s)}{\Gamma(c+s)}(-z)^s\,ds \end{align}
Sin embargo, no estoy seguro de cómo relacionarlo con mi problema.
Gracias.