Por favor, ayúdame a encontrar:
$$ \lim_{x \to 3} \frac{x^{15} - 3^{15} - 15 \cdot 3^{14}(x-3)}{(x-3)^2} $$
No puedo usar la regla de L'Hospital.
Intenté eliminar $x-3$ pero no tengo ni idea de qué hacer a continuación. $$ \lim_{x \to 3} \frac{x^{15} - 3^{15} - 15 \cdot 3^{14}(x-3)}{(x-3)^2} = \lim_{x \to 3} \frac{x^{14} + 3x^{13} + ... + 3^{14} - 15 \cdot 3^{14}}{x-3} $$