Si $f(x,y)= x^3 + 5x^2y + y^3 $ y $u=\langle\frac35, \frac45\rangle $
$$\nabla f(x,y)=\langle 3 x^2 + 10xy, 5x^2 +3y^2\rangle$$
$$D_uf(x,y)=\langle 3 x^2 + 10xy, 5x^2 +3y^2\rangle \cdot \langle\frac{3}{5},\frac{4}{5}\rangle =\frac{1}{5}(29x^2 + 30xy +12y^2) $$
$$D^2_uf(x,y)=\frac{3}{5}\underbrace{\frac{1}{5}(58x+30y)}_{\frac{\partial D_uf(x,y)}{\partial x}}+\frac{4}{5}\underbrace{\frac{1}{5}(30x + 24y)}_{\frac{\partial D_uf(x,y)}{\partial y}} = \frac{1}{25}(174x + 90y + 120x + 96y) = \frac{294x+186y}{25}$$ que da $$D^2_uf(2,1)=\frac{774}{25}$$