$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \sum_{k = 1}^{n + 1}{n{n \choose k - 1} \over {2n \choose k}} & = n\sum_{k = 0}^{n}{{n \choose k} \over {2n \choose k + 1}} \\[5mm] & = n\sum_{k = 0}^{n}{n \choose k} {1 \over \pars{2n}!/\bracks{\pars{k + 1}!\pars{2n - k - 1}!}} \\[5mm] & = n\pars{2n + 1}\sum_{k = 0}^{n} {n \choose k}{\Gamma\pars{k + 2}\Gamma\pars{2n - k}! \over \Gamma\pars{2n + 2}} \\[5mm] & = n\pars{2n + 1}\sum_{k = 0}^{n} {n \choose k}\int_{0}^{1} t^{k + 1}\pars{1 - t}^{2n - k - 1}\,\dd t \\[5mm] & = n\pars{2n + 1}\int_{0}^{1}\pars{1 - t}^{2n}\, {t \over 1 - t}\sum_{k = 0}^{n}{n \choose k} \pars{t \over 1 - t}^{k}\,\dd t \\[5mm] & = n\pars{2n + 1}\int_{0}^{1}\pars{1 - t}^{2n - 1}\, t \pars{1 + {t \over 1 - t}}^{n}\,\dd t \\[5mm] & = n\pars{2n + 1}\int_{0}^{1}t\, \pars{1 - t}^{n - 1}\,\dd t \\[5mm] & = n\pars{2n + 1}\int_{0}^{1}\pars{1 - t}\,t^{n - 1}\,\dd t \\[5mm] & = n\pars{2n + 1}\pars{{1 \over n} - {1 \over n +1}} = \bbx{2n + 1 \over n + 1} \end{align}