Dejemos que $\delta_{\min} (\cdot)$ y $\delta_{\max}(\cdot)$ representan los valores propios más pequeños y más grandes de una matriz.
Matriz dada $A(w)$ y $B(w_1, w_2)$ y $$0 < c_1 \leq \delta_{\min}(A(w)) \leq \delta_{\max}(A(w)) \leq c_2 < \infty,$$ $$\delta_{\min}\left(\int_{-\pi}^{\pi}\int_{-\pi}^{\pi}B(w_1, w_2) \: dw_1 \, dw_2\right) \geq \xi_1 > 0,$$ $$\delta_{\max}\left(\int_{-\pi}^\pi \int_{-\pi}^\pi B(w_1, w_2) \: dw_1 \, dw_2\right) \leq \xi_2 < \infty.$$
Demuestra que la siguiente es definida positiva. $$\int_{-\pi}^\pi \int_{-\pi}^\pi A(w_1)B(w_1, w_2)A^T(w_2)\:dw_1 \, dw_2$$
Cualquier ayuda será muy apreciada.