Una pista:
$u_{tt}+u_{xt}=v_t$
$u_{xt}+u_{xx}=v_x$
$\therefore v_t+v_x=u_{tt}+2u_{xt}+u_{xx}=-u$
$u_{tt}+2u_{xt}+u_{xx}+u=0$
Dejemos que $\begin{cases}p=x+t\\q=x-t\end{cases}$ ,
Entonces $\dfrac{\partial u}{\partial x}=\dfrac{\partial u}{\partial p}\dfrac{\partial p}{\partial x}+\dfrac{\partial u}{\partial q}\dfrac{\partial q}{\partial x}=\dfrac{\partial u}{\partial p}+\dfrac{\partial u}{\partial q}$
$\dfrac{\partial^2u}{\partial x^2}=\dfrac{\partial}{\partial x}\left(\dfrac{\partial u}{\partial p}+\dfrac{\partial u}{\partial q}\right)=\dfrac{\partial}{\partial p}\left(\dfrac{\partial u}{\partial p}+\dfrac{\partial u}{\partial q}\right)\dfrac{\partial p}{\partial x}+\dfrac{\partial}{\partial q}\left(\dfrac{\partial u}{\partial p}+\dfrac{\partial u}{\partial q}\right)\dfrac{\partial q}{\partial x}=\dfrac{\partial^2u}{\partial p^2}+\dfrac{\partial^2u}{\partial pq}+\dfrac{\partial^2u}{\partial pq}+\dfrac{\partial^2u}{\partial q^2}=\dfrac{\partial^2u}{\partial p^2}+2\dfrac{\partial^2u}{\partial pq}+\dfrac{\partial^2u}{\partial q^2}$
$\dfrac{\partial u}{\partial t}=\dfrac{\partial u}{\partial p}\dfrac{\partial p}{\partial t}+\dfrac{\partial u}{\partial q}\dfrac{\partial q}{\partial t}=\dfrac{\partial u}{\partial p}-\dfrac{\partial u}{\partial q}$
$\dfrac{\partial^2u}{\partial t^2}=\dfrac{\partial}{\partial t}\left(\dfrac{\partial u}{\partial p}-\dfrac{\partial u}{\partial q}\right)=\dfrac{\partial}{\partial p}\left(\dfrac{\partial u}{\partial p}-\dfrac{\partial u}{\partial q}\right)\dfrac{\partial p}{\partial t}+\dfrac{\partial}{\partial q}\left(\dfrac{\partial u}{\partial p}-\dfrac{\partial u}{\partial q}\right)\dfrac{\partial q}{\partial t}=\dfrac{\partial^2u}{\partial p^2}-\dfrac{\partial^2u}{\partial pq}-\dfrac{\partial^2u}{\partial pq}+\dfrac{\partial^2u}{\partial q^2}=\dfrac{\partial^2u}{\partial p^2}-2\dfrac{\partial^2u}{\partial pq}+\dfrac{\partial^2u}{\partial q^2}$
$\dfrac{\partial^2u}{\partial x\partial t}=\dfrac{\partial}{\partial x}\left(\dfrac{\partial u}{\partial p}-\dfrac{\partial u}{\partial q}\right)=\dfrac{\partial}{\partial p}\left(\dfrac{\partial u}{\partial p}-\dfrac{\partial u}{\partial q}\right)\dfrac{\partial p}{\partial x}+\dfrac{\partial}{\partial q}\left(\dfrac{\partial u}{\partial p}-\dfrac{\partial u}{\partial q}\right)\dfrac{\partial q}{\partial x}=\dfrac{\partial^2u}{\partial p^2}-\dfrac{\partial^2u}{\partial pq}+\dfrac{\partial^2u}{\partial pq}-\dfrac{\partial^2u}{\partial q^2}=\dfrac{\partial^2u}{\partial p^2}-\dfrac{\partial^2u}{\partial q^2}$
$\therefore\dfrac{\partial^2u}{\partial p^2}-2\dfrac{\partial^2u}{\partial pq}+\dfrac{\partial^2u}{\partial q^2}+2\left(\dfrac{\partial^2u}{\partial p^2}-\dfrac{\partial^2u}{\partial q^2}\right)+\dfrac{\partial^2u}{\partial p^2}+2\dfrac{\partial^2u}{\partial pq}+\dfrac{\partial^2u}{\partial q^2}+u=0$
$4\dfrac{\partial^2u}{\partial p^2}+u=0$
$u(p,q)=f(q)\sin\dfrac{p}{2}+g(q)\cos\dfrac{p}{2}$
$u(t,x)=f(x-t)\sin\dfrac{x+t}{2}+g(x-t)\cos\dfrac{x+t}{2}$
$u_t(t,x)=-f_t(x-t)\sin\dfrac{x+t}{2}+\dfrac{f(x-t)}{2}\cos\dfrac{x+t}{2}-g_t(x-t)\cos\dfrac{x+t}{2}-\dfrac{g(x-t)}{2}\sin\dfrac{x+t}{2}$
$u_x(t,x)=f_x(x-t)\sin\dfrac{x+t}{2}+\dfrac{f(x-t)}{2}\cos\dfrac{x+t}{2}+g_x(x-t)\cos\dfrac{x+t}{2}-\dfrac{g(x-t)}{2}\sin\dfrac{x+t}{2}$
$\therefore v(t,x)=f_{x-t}(x-t)\sin\dfrac{x+t}{2}+g_{x-t}(x-t)\cos\dfrac{x+t}{2}+f(x-t)\cos\dfrac{x+t}{2}-g(x-t)\sin\dfrac{x+t}{2}$
Por lo tanto, $\begin{cases}u(t,x)=f(x-t)\sin\dfrac{x+t}{2}+g(x-t)\cos\dfrac{x+t}{2}\\v(t,x)=f_{x-t}(x-t)\sin\dfrac{x+t}{2}+g_{x-t}(x-t)\cos\dfrac{x+t}{2}+f(x-t)\cos\dfrac{x+t}{2}-g(x-t)\sin\dfrac{x+t}{2}\end{cases}$