1 votos

Es $e^{-x}$ ¿Lipschitz en los reales positivos?

¿Cuál es la constante de Lipschitz de $e^{-x}$ si lo tiene.

5voto

Stephen Denne Puntos 218

Si una función $f$ es diferenciable y tiene una primera derivada acotada, entonces es continua de Lipschitz con una constante de Lipschitz de $K = \sup | f'(x) |$ .

Para la función $f(x) = e^{-x}$ en $x \in (0, \infty)$ , $K = 1$ .

0voto

Jukka Dahlbom Puntos 1219

En efecto, es Lipschitz con una constante de Lipschitz de $1$ . Para demostrar que esto es así, se puede utilizar el teorema del valor medio.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X