Pruébalo:
$$\frac {2\Gamma'(2z)}{\Gamma(2z)}-\frac {\Gamma'(z)}{\Gamma(z)}-\frac {\Gamma \prime(z+\frac{1}{2})}{\Gamma(z+\frac{1}{2})} =2 \log 2$$
Pero obtengo esta igualdad en cero.
Mi prueba:
De la definición de Weierstrass de Gamma tenemos $$\frac{1}{\Gamma(z)}=z.e^{\gamma z}.\prod_{n=1}^{\infty}[ (1+\frac{z}{n}).e^{\frac{-z}{n}} ] $$
$$ -log( \Gamma(z))=log (z)+{\gamma z}+\sum_{n=1}^{\infty}[ log((1+\frac{z}{n}))-{\frac{z}{n}} ] $$
$$ log( \Gamma(z))=-log (z)-{\gamma z}-\sum_{n=1}^{\infty}[ log((1+\frac{z}{n}))-{\frac{z}{n}} ] $$
$$\frac {\Gamma'(z)}{\Gamma(z)} =-\frac{1}{z} -{\gamma }-\sum_{n=1}^{\infty}[ ((\frac{1}{z+n}))-{\frac{1}{n}} ]$$
Esto implica >> $$\frac {2\Gamma'(2z)}{\Gamma(2z)} - \frac {\Gamma'(z)}{\Gamma(z)} - \frac {\Gamma'(z+\frac{1}{2})}{\Gamma(z+\frac{1}{2})}$$ $$= \sum_{n=0}^\infty \frac{1}{z+\frac{1}{2}+n} + \sum_{n=1}^\infty \frac{1}{z+n}-\sum_{n=1}^\infty \frac{2}{2z+n} $$
$$= \sum_{n=0}^\infty \frac{1}{z+\frac{1}{2}+n} + \sum_{n=0}^\infty \frac{1}{z+n+1}-\sum_{n=0}^\infty \frac{2}{2z+n+1}$$ $$= (\frac{1}{z+\frac{1}{2}})+(\frac{1}{z+1})-(\frac{2}{2z+1})+(\frac{1}{z+\frac{3}{2}})+(\frac{1}{z+2})-(\frac{2}{2z+2})+(\frac{1}{z+\frac{5}{2}})+(\frac{1}{z+3})-(\frac{2}{2z+3})+... $$
$$ = (\frac{1}{z+\frac{1}{2}})+(\frac{1}{z+1})-(\frac{1}{z+\frac{1}{2}})+(\frac{1}{z+\frac{3}{2}})+(\frac{1}{z+2})-(\frac{1}{z+1})+(\frac{1}{z+\frac{5}{2}})+(\frac{1}{z+3})-(\frac{1}{z+\frac{3}{2}})+...=0 $$
¿Dónde está el error?