3 votos

El alumno debe responder a 7 de las 10 preguntas de un examen

El estudiante debe responder a 7 de las 10 preguntas en un examen. ¿Cómo si debe responder al menos 3 de las 5 primeras preguntas?

Crédito: PRIMER CURSO DE PROBABILIDAD - Sheldon Ross Universidad del Sur de California

La respuesta es: $$\binom{5}{3}\binom{5}{4}+\binom{5}{4}\binom{5}{3}+\binom{5}{5}\binom{5}{2}=110$$

¿Por qué mi idea no es buena? $$\binom{5}{3}\binom{7}{4}=350$$

Tomo 3 de 5 de las primeras preguntas, y luego tengo otras 7 preguntas que puedo responder y elijo 4. Gracias.

3voto

N. F. Taussig Puntos 8718

Está contando los casos en los que responde más de una vez a cuatro o cinco de las cinco primeras preguntas. Los está contando entre los $\binom{5}{3}$ selecciones de tres de las cinco primeras preguntas y entre las $\binom{7}{4}$ selecciones de cuatro preguntas adicionales.

Supongamos que responde a cuatro de las cinco primeras preguntas. Ha contado ese caso cuatro veces, una por cada una de las $\binom{4}{3}$ formas podría haber seleccionado tres de esas cuatro preguntas como miembro de las tres preguntas que seleccionó de las cinco primeras.

Del mismo modo, si responde a las cinco primeras preguntas, has contado ese caso $10$ veces, una para cada uno de los $\binom{5}{3}$ formas podrías haber seleccionado tres de esas cinco preguntas como miembro de las tres preguntas que seleccionaste de las primeras cinco.

Tenga en cuenta que $$\binom{3}{3}\binom{5}{3}\binom{5}{4} + \binom{4}{3}\binom{5}{4}\binom{5}{3} + \binom{5}{3}\binom{5}{5}\binom{5}{2} = 350 = \binom{5}{3}\binom{7}{4}$$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X