Encuentre $$\int\limits_{0}^{1}\frac{\operatorname{Li_2}\left ( x^2-x \right )}{x}dx$$ $$ \lim_{a\rightarrow 0^+}\int\limits_{a}^{1}\frac{\operatorname{Li_2}\left ( x^2-x \right )}{x}dx=\lim_{a\rightarrow 0^+}-\int\limits_{0}^{1}\left ( 1-x \right ){}_3F_2\left ( 1,1,1;2,2;x^2-x \right )dx=$$ $$= -\sum\limits_{n=0}^{\infty }\frac{\Gamma \left ( n+1 \right )\Gamma \left ( n+1 \right )\Gamma \left ( n+1 \right )}{\Gamma \left ( n+2 \right )\Gamma \left ( n+2 \right )}\frac{\left ( -1 \right )^n}{n!}\int\limits_{0}^{1}x^n\left ( 1-x \right )^{n+1}dx=$$ $$\bigstar \; \int\limits_{0}^{1}x^n\left ( 1-x \right )^{n+1}dx=B\left ( n+1,n+2 \right )=\frac{1}{2}\frac{\left ( 1 \right )_n}{2^{2n}\left ( \frac{3}{2} \right )_n}$$ $$=-\frac{1}{2}\sum\limits_{n=0}^{\infty }\frac{\left ( 1 \right )_n\left ( 1 \right )_n\left ( 1 \right )_n\left ( 1 \right )_n}{\left ( \frac{3}{2} \right )_n\left ( 2 \right )_n\left ( 2 \right )_n}\frac{\left ( -1/4 \right )^n}{n!}=-\frac{1}{2}{}_4F_3\left ( 1,1,1,1;\frac{3}{2},2,2;-\frac{1}{4} \right )$$ $$\bigstar \; {}_4F_3\left ( 1,1,1,1;\frac{3}{2},2,2;-\frac{1}{4} \right )=\frac{4}{5}\zeta \left ( 3 \right )$$ $$\lim_{a\rightarrow 0^+}\int\limits_{a}^{1}\frac{\operatorname{Li_2}\left ( x^2-x \right )}{x}dx=-\frac{2}{5}\zeta \left ( 3 \right )$$ Dudo que haya calculado correctamente la integral... No he encontrado otra manera que resolver a través de series hipergeométricas ...
¿He tomado la decisión correcta? ¿Puede resolverlo más fácilmente?