$$a_{n}=\frac{4^{2n+1}}{n^{2n}}\implies \log(a_n)=(2n+1)\log(4)-2n\log(n)$$ $$\Delta_n=\log(a_{n+1})-\log(a_n)=2 (n \log (n)-(n+1) \log (n+1)+\log (4))$$ Reescritura $$(n+1) \log (n+1)=(n+1)\log(n)+(n+1)\log \left(1+\frac{1}{n}\right)$$ y utilizar la expansión de Taylor $$\Delta_n=\left(\log \left(\frac{16}{n^2}\right)-2\right)-\frac{1}{n}+\frac{1}{3 n^2}+O\left(\frac{1}{n^3}\right)$$
$$\frac{a_{n+1}}{a_n}=e^{\Delta_n}=\frac{16}{e^2 n^2} \Bigg[ 1-\frac{1}{n}+\frac{5}{6 n^2}+O\left(\frac{1}{n^3}\right)\Bigg]$$ Así que, tan pronto como $n>\frac 4 e$ Es decir, que $n\ge 2$ , $\frac{a_{n+1}}{a_n}<1$