$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \sum_{n = 0}^{\infty}{5^{n} \over \pars{2n}!} & = \sum_{n = 0}^{\infty}{\pars{\root{5}}^{2n} \over \pars{2n}!} = \sum_{n = 0}^{\infty}{\pars{\root{5}}^{n} \over n!}\,{1 + \pars{-1}^{n} \over 2} \\[5mm] & = {\sum_{n = 0}^{\infty}\pars{\root{5}}^{n}/n! + \sum_{n = 0}^{\infty}\pars{-\root{5}}^{n}/n!\over 2} = {\expo{\root{5}} + \expo{-\root{5}} \over 2} = \bbx{\cosh\pars{\root{5}}} \end{align}