2 votos

Isomorfismo entre Hom y producto tensorial

Estoy buscando un isomorfismo explícito $Hom(V,V^*)\rightarrow V^*\otimes V^*$ donde $V$ es un espacio vectorial.

He pensado en ello:

$\phi\rightarrow ((u,v)\rightarrow \phi(u)(v))$

Pero no estoy seguro de que esto funcione.

¿Alguien tiene alguna sugerencia?

9voto

Andreas Caranti Puntos 35676

Normalmente lo pienso al revés, es decir, $$ V^{\star} \otimes W \to \hom(V, W), \qquad \varphi \otimes w \mapsto (v \mapsto \varphi(v) w). $$


PS Estoy asumiendo $V, W$ sea de dimensión finita, véanse los comentarios más abajo.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X