Mostrar que $$\lim_{n\to\infty}\frac1n\sum_{k=1}^{\infty}\left\lfloor\dfrac{n}{3^k}\right\rfloor=\frac{1}{2}$$
Que puedo hacer de la mano derecha. $$\sum_{k=1}^{\infty}\left\lfloor\dfrac{n}{3^k}\right\rfloor\le \sum_{k=1}^{\infty}\dfrac{n}{3^k}=\dfrac{n}{2}$$ Pero, ¿cómo resolver la mano izquierda?