Intento encontrar una forma cerrada para la siguiente suma $$\sum_{n=1}^\infty\frac{H_n}{n^3\,2^n},$$ donde $H_n=\displaystyle\sum_{k=1}^n\frac{1}{k}$ es un número armónico.
¿Podría ayudarme?
Intento encontrar una forma cerrada para la siguiente suma $$\sum_{n=1}^\infty\frac{H_n}{n^3\,2^n},$$ donde $H_n=\displaystyle\sum_{k=1}^n\frac{1}{k}$ es un número armónico.
¿Podría ayudarme?
En el mismo espíritu que la respuesta de Robert Israel y continuando Respuesta de Raymond Manzoni (ambos merecen el crédito por inspirar mi respuesta) tenemos $$ \sum_{n=1}^\infty \frac{H_nx^n}{n^2}=\zeta(3)+\frac{1}{2}\ln x\ln^2(1-x)+\ln(1-x)\operatorname{Li}_2(1-x)+\operatorname{Li}_3(x)-\operatorname{Li}_3(1-x). $$ Dividiendo la ecuación anterior por $x$ e integrando se obtiene \begin{align} \sum_{n=1}^\infty \frac{H_nx^n}{n^3}=&\zeta(3)\ln x+\frac12\color{red}{\int\frac{\ln x\ln^2(1-x)}{x}\ dx}+\color{blue}{\int\frac{\ln(1-x)\operatorname{Li}_2(1-x)}x\ dx}\\&+\operatorname{Li}_4(x)-\color{green}{\int\frac{\operatorname{Li}_3(1-x)}x\ dx}.\tag1 \end{align} Utilizar el IBP para evaluar la integral verde fijando $u=\operatorname{Li}_3(1-x)$ y $dv=\frac1x\ dx$ obtenemos \begin{align} \color{green}{\int\frac{\operatorname{Li}_3(1-x)}x\ dx}&=\operatorname{Li}_3(1-x)\ln x+\int\frac{\ln x\operatorname{Li}_2(1-x)}{1-x}\ dx\qquad x\mapsto1-x\\ &=\operatorname{Li}_3(1-x)\ln x-\color{blue}{\int\frac{\ln (1-x)\operatorname{Li}_2(x)}{x}\ dx}.\tag2 \end{align} Utilizando la fórmula de reflexión de Euler para el dilogaritmo $$ \operatorname{Li}_2(x)+\operatorname{Li}_2(1-x)=\frac{\pi^2}6-\ln x\ln(1-x), $$ entonces combinando la integral azul en $(1)$ y $(2)$ produce $$ \frac{\pi^2}6\int\frac{\ln (1-x)}{x}\ dx-\color{red}{\int\frac{\ln x\ln^2(1-x)}{x}\ dx}=-\frac{\pi^2}6\operatorname{Li}_2(x)-\color{red}{\int\frac{\ln x\ln^2(1-x)}{x}\ dx}. $$ Configuración $x\mapsto1-x$ y utilizando la identidad $H_{n+1}-H_n=\frac1{n+1}$ la integral roja se convierte en \begin{align} \color{red}{\int\frac{\ln x\ln^2(1-x)}{x}\ dx}&=-\int\frac{\ln (1-x)\ln^2 x}{1-x}\ dx\\ &=\int\sum_{n=1}^\infty H_n x^n\ln^2x\ dx\\ &=\sum_{n=1}^\infty H_n \int x^n\ln^2x\ dx\\ &=\sum_{n=1}^\infty H_n \frac{\partial^2}{\partial n^2}\left[\int x^n\ dx\right]\\ &=\sum_{n=1}^\infty H_n \frac{\partial^2}{\partial n^2}\left[\frac {x^{n+1}}{n+1}\right]\\ &=\sum_{n=1}^\infty H_n \left[\frac{x^{n+1}\ln^2x}{n+1}-2\frac{x^{n+1}\ln x}{(n+1)^2}+2\frac{x^{n+1}}{(n+1)^3}\right]\\ &=\ln^2x\sum_{n=1}^\infty\frac{H_n x^{n+1}}{n+1}-2\ln x\sum_{n=1}^\infty\frac{H_n x^{n+1}}{(n+1)^2}+2\sum_{n=1}^\infty\frac{H_n x^{n+1}}{(n+1)^3}\\ &=\frac12\ln^2x\ln^2(1-x)-2\ln x\left[\sum_{n=1}^\infty\frac{H_{n+1} x^{n+1}}{(n+1)^2}-\sum_{n=1}^\infty\frac{x^{n+1}}{(n+1)^3}\right]\\&+2\left[\sum_{n=1}^\infty\frac{H_{n+1} x^{n+1}}{(n+1)^3}-\sum_{n=1}^\infty\frac{x^{n+1}}{(n+1)^4}\right]\\ &=\frac12\ln^2x\ln^2(1-x)-2\ln x\left[\sum_{n=1}^\infty\frac{H_{n} x^{n}}{n^2}-\sum_{n=1}^\infty\frac{x^{n}}{n^3}\right]\\&+2\left[\sum_{n=1}^\infty\frac{H_{n} x^{n}}{n^3}-\sum_{n=1}^\infty\frac{x^{n}}{n^4}\right]\\ &=\frac12\ln^2x\ln^2(1-x)-2\ln x\left[\sum_{n=1}^\infty\frac{H_{n} x^{n}}{n^2}-\operatorname{Li}_3(x)\right]\\&+2\left[\sum_{n=1}^\infty\frac{H_{n} x^{n}}{n^3}-\operatorname{Li}_4(x)\right]. \end{align} Juntando todo, tenemos \begin{align} \sum_{n=1}^\infty \frac{H_nx^n}{n^3}=&\frac12\zeta(3)\ln x-\frac18\ln^2x\ln^2(1-x)+\frac12\ln x\left[\sum_{n=1}^\infty\frac{H_{n} x^{n}}{n^2}-\operatorname{Li}_3(x)\right]\\&+\operatorname{Li}_4(x)-\frac{\pi^2}{12}\operatorname{Li}_2(x)-\frac12\operatorname{Li}_3(1-x)\ln x+C.\tag3 \end{align} Configuración $x=1$ para obtener la constante de integración, \begin{align} \sum_{n=1}^\infty \frac{H_n}{n^3}&=\operatorname{Li}_4(1)-\frac{\pi^2}{12}\operatorname{Li}_2(1)+C\\ \frac{\pi^4}{72}&=\frac{\pi^4}{90}-\frac{\pi^4}{72}+C\\ C&=\frac{\pi^4}{60}. \end{align} Así \begin{align} \sum_{n=1}^\infty \frac{H_nx^n}{n^3}=&\frac12\zeta(3)\ln x-\frac18\ln^2x\ln^2(1-x)+\frac12\ln x\left[\sum_{n=1}^\infty\frac{H_{n} x^{n}}{n^2}-\operatorname{Li}_3(x)\right]\\&+\operatorname{Li}_4(x)-\frac{\pi^2}{12}\operatorname{Li}_2(x)-\frac12\operatorname{Li}_3(1-x)\ln x+\frac{\pi^4}{60}.\tag4 \end{align} Por último, fijar $x=\frac12$ obtenemos \begin{align} \sum_{n=1}^\infty \frac{H_n}{2^nn^3}=\color{purple}{\frac{\pi^4}{720}+\frac{\ln^42}{24}-\frac{\ln2}8\zeta(3)+\operatorname{Li}_4\left(\frac12\right)}, \end{align} que coincide con la respuesta de Cleo.
Referencias :
$[1]\ $ Número armónico
$[2]\ $ Polilogaritmo
Aunque parece que has cometido un pequeño error en alguna parte (que soy incapaz de localizar), tu respuesta es impresionante y merece un upvote. +1
Gracias por el cumplido y el upvote @RandomVariable, significa mucho viniendo de ti. El error viene de la constante de integración, pero ya está arreglado. Creo que ya está correcto :)
¿Puedo pedirte un favor? ¿Qué pasos has seguido para llegar a este resultado tan bonito? Gracias.
En lugar de preguntarte cómo has llegado a esta respuesta, me interesa saber más sobre ti. ¿Quién es usted?
Nota: Tenga en cuenta que la respuesta más votada por @Tunk-Fey es lamentablemente incorrecto . Contrariamente a lo que afirma, su expresión final (4) cuando se evalúa en $x=\frac{1}{2}$ no coincide con la respuesta de @Cleo sino que difiere en $\frac{\pi^4}{120}$ de la identidad correcta: \begin{align*} \sum_{n=1}^\infty \frac{H_n}{n^32^n}&=-\frac{1}{8}\ln 2\zeta(3)+\frac{1}{24}\ln^4(2)+\frac{\pi^4}{720}+ \operatorname{Li}_4\left(\frac{1}{2}\right)\\ &\stackrel{.}{=}0.55824 \end{align*} Un análisis bastante detallado de la desviación del resultado correcto se ofrece en esta respuesta .
No obstante, ha sido un placer revisar su respuesta, que contiene aspectos agradables e instructivos. Aquí ofrezco una solución con un espíritu similar que espero supere los problemas de su respuesta.
Raymond Manzoni ha demostrado muy bien que para $|x|<1$ \begin{align*} \sum_{n=1}^\infty \frac{H_nx^n}{n^2}&=\zeta(3)+\frac{1}{2}\ln x\ln^2(1-x)+\ln(1-x)\operatorname{Li}_2(1-x)\\ &\qquad+\operatorname{Li}_3(x)-\operatorname{Li}_3(1-x) \end{align*}
Este resultado es nuestro punto de partida.
\begin{align*} \sum_{n=1}^\infty \frac{H_nx^n}{n^3}&=\int\sum_{n=1}^\infty \frac{H_nx^{n-1}}{n^2}dx\\ &=\zeta(3)\ln(x)+\frac{1}{2}\int\frac{1}{x}\ln x\ln^2(1-x)dx+\int\frac{\ln(1-x)}{x}\operatorname{Li}_2(1-x)dx\\ &\qquad+\int\frac{1}{x}\operatorname{Li}_3(x)dx-\int\frac{1}{x}\operatorname{Li}_3(1-x)dx+C\tag{1}\\ \end{align*}
En primer lugar consideramos $\int\frac{1}{x}\operatorname{Li}_3(1-x)dx$ . Integración por partes con $u=\frac{1}{x}$ y $dv=\operatorname{Li}_3(1-x)dx$ da
\begin{align*} \int\frac{1}{x}\operatorname{Li}_3(1-x)dx&=\ln x\operatorname{Li}_3(1-x)+\int\frac{\ln x}{1-x}\operatorname{Li}_2(1-x)dx\\ &=\ln x\operatorname{Li}_3(1-x)+\frac{1}{2}\operatorname{Li}_2^2(1-x)+C \end{align*} De nuevo la integración por partes en el RHS con $u=\frac{\ln x}{1-x}$ y $dv=\operatorname{Li}_2(1-x)dx$ da \begin{align*} \int\frac{\ln x}{1-x}\operatorname{Li}_2(1-x)dx&=\operatorname{Li}_2^2(1-x) -\int\frac{\ln x}{1-x}\operatorname{Li}_2(1-x)dx\\ \Longrightarrow\int\frac{\ln x}{1-x}\operatorname{Li}_2(1-x)dx&=\frac{1}{2}\operatorname{Li}_2^2(1-x)+C \end{align*}
Así pues \begin{align*} \int\frac{1}{x}\operatorname{Li}_3(1-x)dx&=\operatorname{Li}_3(1-x)\ln x+\frac{1}{2}\operatorname{Li}_2^2(1-x)+C \end{align*}
y obtenemos sustituyendo este resultado en (1) y observando que \begin{align*} \int\frac{1}{x}\operatorname{Li}_3(x)dx=\operatorname{Li}_4(x)+C \end{align*}
\begin{align*} \sum_{n=1}^\infty \frac{H_nx^n}{n^3}&=\zeta(3)\ln x+\frac{1}{2}\int\frac{1}{x}\ln x\ln^2(1-x)dx+\int\frac{\ln(1-x)}{x}\operatorname{Li}_2(1-x)dx\\ &\qquad+\operatorname{Li}_4(x)-\left(\operatorname{Li}_3(1-x)\ln x+\frac{1}{2}\operatorname{Li}_2^2(1-x)\right)+C\tag{2}\\ \end{align*}
El siguiente paso es calcular $\int\frac{1}{x}\ln x\ln^2(1-x)dx$ . Utilizamos Fórmula de reflexión de Euler \begin{align*} \operatorname{Li}_2(x)+\operatorname{Li}_2(1-x)=\frac{\pi^2}{6}-\ln x\ln(1-x) \end{align*} para dividir la integral en partes que puedan calcularse directamente o que puedan transformarse en la integral restante. Obtenemos utilizando la fórmula de reflexión
\begin{align*} \int&\frac{1}{x}\ln x\ln^2(1-x)dx\\ &=\int\frac{\ln(1-x)}{x}\left(\frac{\pi^2}{6}-\operatorname{Li}_2(x)-\operatorname{Li}_2(1-x)\right)\\ &=-\frac{\pi^2}{6}\operatorname{Li}_2(x)-\int\frac{\ln(1-x)}{x}\operatorname{Li}_2(x)dx -\int\frac{\ln(1-x)}{x}\operatorname{Li}_2(1-x)dx\\ &=-\frac{\pi^2}{6}\operatorname{Li}_2(x)+\frac{1}{2}\operatorname{Li}_2^2(x)dx -\int\frac{\ln(1-x)}{x}\operatorname{Li}_2(1-x)dx \end{align*}
Introduciendo este resultado en (2) obtenemos
\begin{align*} \sum_{n=1}^\infty \frac{H_nx^n}{n^3}&=\zeta(3)\ln x +\frac{1}{2}\left(-\frac{\pi^2}{6}\operatorname{Li}_2(x)+\frac{1}{2}\operatorname{Li}_2^2(x) -\int\frac{\ln(1-x)}{x}\operatorname{Li}_2(1-x)dx\right)\\ &\qquad+\int\frac{\ln(1-x)}{x}\operatorname{Li}_2(1-x)dx\\ &\qquad+\operatorname{Li}_4(x)-\left(\operatorname{Li}_3(1-x)\ln x+\frac{1}{2}\operatorname{Li}_2^2(1-x)\right)+C\\ &=\zeta(3)\ln x-\frac{\pi^2}{12}\operatorname{Li}_2(x)+\frac{1}{4}\operatorname{Li}_2^2(x) -\frac{1}{2}\operatorname{Li}_2^2(1-x)\\ &\qquad-\operatorname{Li}_3(1-x)\ln x+\operatorname{Li}_4(x)\\ &\qquad+\frac{1}{2}\int\frac{\ln(1-x)}{x}\operatorname{Li}_2(1-x)dx+C\tag{3}\\ \end{align*}
La parte más compleja y engorrosa es la integral restante en (3). Con la ayuda de Wolfram Alpha se obtiene un resultado bastante largo. Tras algunas simplificaciones obtenemos \begin{align*} \int&\frac{\ln(1-x)}{x}\operatorname{Li}_2{(1-x)}dx\\ &=-\frac{1}{2}\ln^2(1-x)\ln^2x+\ln(1-x)\ln^3x-\frac{1}{4}\ln^4x\\ &\qquad-\operatorname{Li}_2(1-x)\left(\ln^2(1-x)-\ln(1-x)\ln x\right)+\operatorname{Li}_2(x)\ln^2 x\\ &\qquad-\operatorname{Li}_2\left(1-\frac{1}{x}\right)\left(\ln^2(1-x)-2\ln(1-x)\ln x+\ln^2 x\right)+\frac{1}{2}\operatorname{Li}_2^2(1-x)\\ &\qquad+2\left(\operatorname{Li}_3\left(1-\frac{1}{x}\right)\left(\ln(1-x)-\ln x\right)+\operatorname{Li}_3(1-x)\ln(1-x) -\operatorname{Li}_3(x)\ln x\right)\\ &\qquad-2\left(\operatorname{Li}_4(1-x)+\operatorname{Li}_4\left(1-\frac{1}{x}\right)-\operatorname{Li}_4(x)\right)+C\\ \end{align*}
Finalmente sustituyendo esta expresión en (3) y haciendo algunas simplificaciones más obtenemos
\begin{align*} \sum_{n=1}^\infty \frac{H_nx^n}{n^3}&=\zeta(3)\ln x-\frac{\pi^2}{12}\operatorname{Li}_2(x)+\frac{1}{4}\operatorname{Li}_2^2(x) -\frac{1}{2}\operatorname{Li}_2^2(1-x)\\ &\quad-\operatorname{Li}_3(1-x)\ln x+\operatorname{Li}_4(x)\\ &\quad+\frac{1}{2}\left(-\frac{1}{2}\ln^2(1-x)\ln^2x+\ln(1-x)\ln^3x-\frac{1}{4}\ln^4x\right.\\ &\quad\quad-\operatorname{Li}_2(1-x)\left(\ln^2(1-x)-\ln(1-x)\ln x\right)+\operatorname{Li}_2(x)\ln^2 x\\ &\quad\quad-\operatorname{Li}_2\left(1-\frac{1}{x}\right)\left(\ln^2(1-x)-2\ln(1-x)\ln x+\ln^2 x\right)\\ &\quad\quad+\frac{1}{2}\operatorname{Li}_2^2(1-x)\\ &\quad\quad+2\left(\operatorname{Li}_3\left(1-\frac{1}{x}\right)\left(\ln(1-x)-\ln x\right)\right.\\ &\quad\quad\quad+\left.\operatorname{Li}_3(1-x)\ln(1-x)-\operatorname{Li}_3(x)\ln x\right)\\ &\quad\quad\left.-2\left(\operatorname{Li}_4(1-x)+\operatorname{Li}_4\left(1-\frac{1}{x}\right)-\operatorname{Li}_4(x)\right)\right)+C\\ &=\zeta(3)\ln x-\frac{1}{4}\ln^2(1-x)\ln^2x+\frac{1}{2}\ln(1-x)\ln^3x-\frac{1}{8}\ln^4x\\ &\quad-\frac{1}{2}\operatorname{Li}_2(1-x)\left(\ln^2(1-x)-\ln(1-x)\ln x\right)+\frac{1}{2}\operatorname{Li}_2(x)\left(\ln^2 x-\frac{\pi^2}{6}\right)\\ &\quad-\frac{1}{2}\operatorname{Li}_2\left(1-\frac{1}{x}\right)\left(\ln^2(1-x)-2\ln(1-x)\ln x+\ln^2 x\right)\\ &\quad+\frac{1}{4}\operatorname{Li}^2_2(x)-\frac{1}{4}\operatorname{Li}^2_2(1-x)-\operatorname{Li}_3(x)\ln x\\ &\quad+\operatorname{Li}_3\left(1-\frac{1}{x}\right)\left(\ln(1-x)-\ln x\right)+\operatorname{Li}_3(1-x)\left(\ln(1-x)-\ln(x)\right)\\ &\quad-\operatorname{Li}_4(1-x)-\operatorname{Li}_4\left(1-\frac{1}{x}\right)+2\operatorname{Li}_4(x)+C\tag{4} \end{align*}
A partir de (4) podemos determinar la constante de integración $C$ . Para ello calculamos $C$ tomando el límite como $x\rightarrow 1$ . La mayoría de los términos desaparecen y observando que según esta respuesta \begin{align*} \sum_{n=1}^\infty \frac{H_n}{n^3}=\frac{\pi^4}{72} \end{align*} obtenemos respetando que $\operatorname{Li}_2(1)=\frac{\pi^2}{6}$ y $\operatorname{Li}_4(1)=\frac{\pi^4}{90}$
\begin{align*} \frac{\pi^4}{72}&=\frac{1}{2}\operatorname{Li}_2(1)\left(-\frac{\pi^2}{6}\right)+\frac{1}{4}\operatorname{Li}^2_2(1)+2\operatorname{Li}_4(1)+C\\ &=-\frac{\pi^4}{72}+\frac{\pi^4}{144}+\frac{2\pi^4}{90}+C\\ \text{it follows}\qquad C&=-\frac{\pi^4}{720} \end{align*}
Configuración $x=\frac{1}{2}$ en (4) obtenemos finalmente con $C=-\frac{\pi^4}{720}$ y señalando que \begin{align*} \operatorname{Li}_2\left(\frac{1}{2}\right)&=\frac{\pi^{2}}{12}-\frac{1}{2}\ln^2(2)\\ \operatorname{Li}_3\left(\frac{1}{2}\right)&=\frac{7}{8}\zeta(3)+\frac{1}{6}\ln^3(2)-\frac{\pi^{2}}{12}\ln 2\\ \operatorname{Li}_4(-1)&=-\frac{7\pi^4}{720} \end{align*}
\begin{align*} \sum_{n=1}^\infty \frac{H_n}{n^32^n}&=-\zeta(3)\ln(2)+\frac{1}{8}\ln^4(2) +\frac{1}{2}\operatorname{Li}_2\left(\frac{1}{2}\right)\left(\ln^2(2)-\frac{\pi^2}{6}\right)\\ &\qquad+\operatorname{Li}_3\left(\frac{1}{2}\right)\ln 2-\operatorname{Li}_4(-1)+\operatorname{Li}_4\left(\frac{1}{2}\right)-\frac{\pi^4}{720}\\ &=-\frac{1}{8}\ln 2\zeta(3)+\frac{1}{24}\ln^4(2)+\frac{\pi^4}{720}+ \operatorname{Li}_4\left(\frac{1}{2}\right)\\ &\stackrel{.}{=}0.55824 \end{align*} y se cumple la afirmación.
Nota: Quedan abiertos dos aspectos. El importante es una derivación de \begin{align*} \int&\frac{\ln(1-x)}{x}\operatorname{Li}_2{(1-x)}dx \end{align*} sin el apoyo de WA. También estaría bien encontrar algunas simplificaciones adicionales de la expresión final (4).
Comience con la serie $$\sum_{n=1}^\infty H_n z^n = - \dfrac{\ln(1-z)}{1-z} = f_0(z) $$
Entonces (según Maple 18) $$ \sum_{n=1}^\infty \dfrac{H_n}{n} z^n = \int_0^z \dfrac{f_0(t)}{t}\; dt = \operatorname{Li}_{2}(1-z) + \dfrac{\ln(1-z)^2}{2} = f_1(z)$$
$$\displaystyle \sum_{n=1}^\infty \dfrac{H_n}{n^2} z^n = \int_0^z \dfrac{f_1(t)}{t} dt$$
$$= \zeta \left( 3 \right) +\dfrac{1}{2}\, \ln^2 (1-z) \ln \left( z \right) +\ln (1-z) \operatorname{Li}_{2} (z) -\operatorname{Li}_{3}(1-z) + \operatorname{Li}_{3}(z) $$
Pero para la siguiente integración no encuentra una forma cerrada. $$\sum_{n=1}^\infty \dfrac{H_n}{n^3} z^n = \int_0^z f_2(t)\; dt$$
Si lo vas a hacer en términos de una integral definida que involucra polilogaritmos, podrías tomar nota de eso: $$H_{n}=\int_{0}^1\frac{1}{1-x}(1-x^n) dx$$ Luego divídelo entre $n^32^n$ y sumar sobre $\mathbb{N}$ para que: $$\sum_{n=1}^\infty \frac{H_{n}}{n^32^n}=\int_{0}^1\frac{(Polylog[3,1/2]-Polylog[3,x/2])}{x-1}dx$$
$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \sum_{n = 1}^{\infty}{H_{n} \over n^{3}\,2^{n}} & = \sum_{n = 1}^{\infty}{H_{n} \over 2^{n}} \bracks{{1 \over 2}\int_{0}^{1}\ln^{2}\pars{x}\,x^{n - 1}\,\dd x} = {1 \over 2}\int_{0}^{1}\ln^{2}\pars{x}\sum_{n = 1}^{\infty} \bracks{H_{n}\pars{x \over 2}^{n}}{\dd x \over x} \\[5mm] &= {1 \over 2}\int_{0}^{1}\ln^{2}\pars{x} \bracks{-\,{\ln\pars{1 - x/2} \over 1 - x/2}}\,{\dd x \over x} = -\,{1 \over 2}\int_{0}^{1/2} {\ln^{2}\pars{2x}\ln\pars{1 - x} \over \pars{1 - x}x}\,\dd x \\[5mm] & = -\,{1 \over 2}\int_{0}^{1/2}{\ln^{2}\pars{2x}\ln\pars{1 - x} \over x}\,\dd x - {1 \over 2}\int_{0}^{1/2}{\ln^{2}\pars{2x}\ln\pars{1 - x} \over 1 - x}\,\dd x \\[5mm] & = {1 \over 2}\int_{0}^{1/2}\mrm{Li}_{2}'\pars{x}\ln^{2}\pars{2x}\,\dd x - {1 \over 2}\int_{1/2}^{1}{\ln^{2}\pars{2\bracks{1 - x}}\ln\pars{x} \over x} \,\dd x \\[1cm] & = -\int_{0}^{1/2}\mrm{Li}_{3}'\pars{x}\ln\pars{2x}\,\dd x \\[5mm] & - {1 \over 2}\,\ln^{2}\pars{2}\int_{1/2}^{1}{\ln\pars{x} \over x}\,\dd x - \ln\pars{2}\int_{1/2}^{1}{\ln\pars{1 - x}\ln\pars{x} \over x}\,\dd x - {1 \over 2}\int_{1/2}^{1}{\ln^{2}\pars{1 - x}\ln\pars{x} \over x}\,\dd x \\[1cm] & = \int_{0}^{1/2}\mrm{Li}_{4}'\pars{x}\dd x + {1 \over 4}\,\ln^{4}\pars{2} + \ln\pars{2}\int_{1/2}^{1}\mrm{Li}_{2}'\pars{x}\ln\pars{x}\,\dd x - {1 \over 2}\int_{1/2}^{1}{\ln^{2}\pars{1 - x}\ln\pars{x} \over x}\,\dd x \\[1cm] & = \mrm{Li}_{4}\pars{1 \over 2} + {1 \over 4}\,\ln^{4}\pars{2} + \ln\pars{2}\bracks{% \mrm{Li}_{2}\pars{1 \over 2}\ln\pars{2} -\int_{1/2}^{1}\mrm{Li}_{3}'\pars{x}\,\dd x} \\[5mm] & - {1 \over 2}\int_{1/2}^{1}{\ln^{2}\pars{1 - x}\ln\pars{x} \over x}\,\dd x \\[1cm] & = \mrm{Li}_{4}\pars{1 \over 2} + {1 \over 4}\,\ln^{4}\pars{2} + \ln\pars{2}\bracks{% \mrm{Li}_{2}\pars{1 \over 2}\ln\pars{2} - \mrm{Li}_{3}\pars{1} + \mrm{Li}_{3}\pars{1 \over 2}} \\[5mm] & - {1 \over 2}\int_{1/2}^{1}{\ln^{2}\pars{1 - x}\ln\pars{x} \over x}\,\dd x \end{align}
Dado que los valores de $\ds{\,\mrm{Li}_{2}\pars{1/2}}$ y $\ds{\,\mrm{Li}_{3}\pars{1/2}}$ son bien conocido y $\ds{\,\mrm{Li}_{3}\pars{1} = \zeta\pars{3}}$ :
\begin{align} \sum_{n = 1}^{\infty}{H_{n} \over n^{3}\,2^{n}} & = -\,{1 \over 12}\,\ln^{4}\pars{2} - {1 \over 8}\,\ln\pars{2}\zeta\pars{3} + \,\mrm{Li}_{4}\pars{1 \over 2} - {1 \over 2}\ \underbrace{\int_{1/2}^{1}{\ln^{2}\pars{1 - x}\ln\pars{x} \over x}\,\dd x} _{\ds{\equiv\ \mc{I}}} \label{1}\tag{1} \end{align}
$\ds{\large\mc{I}:\ ?}$ . \begin{align} \mc{I} & \equiv \int_{1/2}^{1}{\ln^{2}\pars{1 - x}\ln\pars{x} \over x}\,\dd x \\[5mm] & = {1 \over 3}\int_{1/2}^{1}\!{\ln^{3}\pars{1 - x} \over x}\dd x - {1 \over 3}\int_{1/2}^{1}\!{\ln^{3}\pars{x} \over x}\dd x - {1 \over 3}\int_{1/2}^{1}\!\ln^{3}\pars{1 - x \over x}{\dd x \over x} + \int_{1/2}^{1}\!{\ln\pars{1 - x}\ln^{2}\pars{x} \over x}\,\dd x \\[5mm] & = {1 \over 3}\int_{0}^{1/2}{\ln^{3}\pars{x} \over 1 - x}\dd x + {1 \over 12}\,\ln^{4}\pars{2} + {1 \over 3}\int_{0}^{-1}{\ln^{3}\pars{-x} \over 1 - x}\,\dd x - \int_{1/2}^{1}\mrm{Li}_{2}'\pars{x}\ln^{2}\pars{x}\,\dd x \\[1cm] & = {1 \over 3}\bracks{-\ln^{4}\pars{2} - 3\int_{0}^{1/2}\mrm{Li}_{2}'\pars{x}\ln^{2}\pars{x}\dd x} + {1 \over 12}\,\ln^{4}\pars{2} - \int_{0}^{-1}\mrm{Li}_{2}'\pars{x}\ln^{2}\pars{-x}\,\dd x \\[5mm] & -\int_{1/2}^{1}\mrm{Li}_{2}'\pars{x}\ln^{2}\pars{x}\,\dd x \\[1cm] & = -\,{1 \over 4}\,\ln^{4}\pars{2} -\int_{0}^{1}\mrm{Li}_{2}'\pars{x}\ln^{2}\pars{x}\,\dd x - \int_{0}^{-1}\mrm{Li}_{2}'\pars{x}\ln^{2}\pars{-x}\,\dd x \end{align}
El resto de las integrales pueden evaluarse directamente mediante sucesivas integración por partes y utilizando el $\ds{\,\mrm{Li}_{s}}$ propiedad recursiva . A saber,
\begin{align} &\int\mrm{Li}_{2}'\pars{x}\ln^{2}\pars{\pm x}\,\dd x = \mrm{Li}_{2}\pars{x}\ln^{2}\pars{\pm x} - 2\int\mrm{Li}_{3}'\pars{x}\ln\pars{\pm x}\,\dd x \\[5mm] & = \mrm{Li}_{2}\pars{x}\ln^{2}\pars{\pm x} - 2\,\mrm{Li}_{3}\pars{x}\ln\pars{\pm x} + 2\int\mrm{Li}_{4}'\pars{x}\,\dd x \\[5mm] & =\ \bbox[15px,#ffe,border:1px dotted navy]{\ds{% \mrm{Li}_{2}\pars{x}\ln^{2}\pars{\pm x} - 2\,\mrm{Li}_{3}\pars{x}\ln\pars{\pm x} + 2\,\mrm{Li}_{4}\pars{x}}} \end{align} tal que \begin{equation} \mc{I} \equiv \int_{1/2}^{1}{\ln^{2}\pars{1 - x}\ln\pars{x} \over x}\,\dd x =\ \bbox[15px,#ffe,border:1px dotted navy]{\ds{% -\,{1 \over 4}\,\ln^{4}\pars{2} - {\pi^{4} \over 360}}}\label{2}\tag{2} \end{equation}
Con \eqref{1} y \eqref{2}: \begin{align} \sum_{n = 1}^{\infty}{H_{n} \over n^{3}\,2^{n}} & = -\,{1 \over 12}\,\ln^{4}\pars{2} - {1 \over 8}\,\ln\pars{2}\zeta\pars{3} + \,\mrm{Li}_{4}\pars{1 \over 2} - {1 \over 2} \bracks{-\,{1 \over 4}\,\ln^{4}\pars{2} - {\pi^{4} \over 360}} \\[5mm] & =\ \bbox[25px,#ffe,border:1px dotted navy]{\ds{% {1 \over 720}\,\pi^{4} + {1 \over 24}\,\ln^{4}\pars{2} - {1 \over 8}\,\ln\pars{2}\zeta\pars{3} + \,\mrm{Li}_{4}\pars{1 \over 2}}}\ \approx 0.5582 \end{align}
I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.
1 votos
Mathematica da $$\frac{1}{24} \left(\text{EulerGamma} \left(4 \text{Log}[2]^3-\pi ^2 \text{Log}[4]+21 \text{Zeta}[3]\right)-12 \text{HypergeometricPFQRegularized}^{(\{0,0,0,0\},\{0,0,1\},0)}\left[\{1,1,1,1\},\{2,2,2\},\frac{1}{2}\right]\right)$$
0 votos
¿Hay alguna razón por la que espere una forma cerrada? (Es decir, más simple que la que te acaba de dar Jack).
0 votos
@JackD'Aurizio Entonces la cuestión es cómo encontrar una forma cerrada para esa derivada :)
9 votos
Algunos de orden inferior si estás interesado: $$\sum_{n=1}^\infty\frac{H_{n}}{n2^n}=\frac{\pi^2}{12}$$ $$\sum_{n=1}^\infty\frac{H_{n}}{n^22^n}=\zeta(3)-\frac{\pi^2\ln(2)}{12}$$ También $$\sum_{n=1}^\infty\frac{1}{n^32^n} =\frac{\ln(2)^3}{6}-\frac{\pi^2\ln(2)}{12}+\frac{7}{8}\zeta(3)$$ $$\sum_{n=1}^\infty \frac{H_{n}}{n^3}=\frac{\pi^4}{72}$$
0 votos
¿Existe una relación conocida entre $$\sum_{n=1}^\infty\frac{1}{n^s\,2^n}$$ y el $\zeta$ ¿función?
0 votos
@Conifold Para casos $1$ , $2$ y $3$ Sí. Pero para enteros mayores que $3$ no se conocen fórmulas explícitas según: es.wikipedia.org/wiki/Polilogaritmo . Véase más arriba "Relaciones con otras funciones".
0 votos
@Ethan. Parece que $\sum_{n=1}^\infty \frac{H_{n}}{n^k}$ tiene una solución de forma cerrada para cualquier valor de entero $k>1$ .
0 votos
@ClaudeLeibovici Sí, pero no su suma: $\sum_{n=1}^\infty\frac{1}{n^s2^n}$
0 votos
@Ethan. Sí lo sé y me gustaría mucho cómo Cleo llegó al hermoso resultado. Saludos :-)