Tengo esta pregunta de deberes. Considere el conjunto $X = \{1,2,3\}$ .
$(a)$ Con el orden natural en $X$ , encontrar la base de su topología de orden,
$(b)$ Demuestre que la topología de orden en $X$ es igual a su topología discreta.
Supongo que el orden natural es $1<2<3$ para que $1$ el es el menor elemento y $3$ es el elemento más grande, entonces $B=\{[1,3),(1,3),(1,3]\}$ es la base de la topología de orden en $X$ .
Para la parte $(b)$ Me gustaría escribir $B=\bigg\{\{1,2\},\{2\},\{2,3\}\bigg\}$ pero veo que no va a satisfacer. Necesito ayuda.
Gracias.