$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\lim_{n \to \infty}\pars{\sum_{x = 1}^{n}x^{-1/3} - {3 \over 2}\,n^{2/3}} = \zeta\pars{1 \over 3}}$
\begin{align} \sum_{x = 1}^{n}x^{-1/3} & = {3 \over 2}\sum_{x = 1}^{n}{x - 1/3 \over x^{1/3}} - {3 \over 2}\sum_{x = 1}^{n}x^{2/3} + {3 \over 2}\sum_{x = 0}^{n - 1}{1 \over \pars{x + 1}^{1/3}} \\[5mm] & = {3 \over 2}\sum_{x = 1}^{n}{x - 1/3 \over x^{1/3}} - {3 \over 2}\sum_{x = 1}^{n}x^{2/3} + {3 \over 2} + {3 \over 2}\sum_{x = 1}^{n}{1 \over \pars{x + 1}^{1/3}} - {3 \over 2}{1 \over \pars{n + 1}^{1/3}} \\[1cm] & = -\,{3 \over 2}\sum_{x = 1}^{n} \bracks{{x \over \pars{x + 1}^{1/3}} - {x - 1/3 \over x^{1/3}}} + {3 \over 2} + {3 \over 2}\ \underbrace{% \bracks{\sum_{x = 1}^{n}\pars{x + 1}^{2/3} - \sum_{x = 1}^{n}x^{2/3}}} _{\ds{-1 + \pars{n + 1}^{2/3}}} \\ & \phantom{=\,\,}-\,{3 \over 2}{1 \over \pars{n + 1}^{1/3}} \end{align}
\begin{align} &\mbox{Then,}\quad\lim_{n \to \infty}\pars{% \sum_{x = 1}^{n}x^{-1/3} - {3 \over 2}\,n^{2/3}}\ =\ \overbrace{-\,{3 \over 2} \sum_{x = 1}^{\infty} \bracks{{x \over \pars{x + 1}^{1/3}} - {x - 1/3 \over x^{1/3}}}} ^{\ds{=\ \zeta\pars{1 \over 3}}}\label{1}\tag{1} \\[5mm] & \phantom{=}+\ \underbrace{{3 \over 2}\lim_{n \to \infty}\bracks{\pars{n + 1}^{2/3} - \,{3 \over 2}{1 \over \pars{n + 1}^{1/3}} - n^{2/3}}}_{\ds{=\ 0}}\ =\ \bbox[10px,#ffe,border:1px dotted navy]{\ds{\zeta\pars{1 \over 3}}} \end{align}
La serie, en la \eqref {1} RHS, es un $\ds{\zeta}$ -representación que se obtiene reordenando la "definición original" de forma que se amplía el rango de validez de la serie. Los detalles se dan en el enlace citado anteriormente.