Se le pide que ponga la serie en el formulario : $$(2+x^2)y"+x^2y'+3y=\sum^{\infty}_{n=0}c_n x^n$$ para encontrar los coeficientes $c_n$ .
$$(2+x^2)y"+x^2y'+3y=(2+x^2)\sum^{\infty}_{n=0}n(n-1)a_n x^{n-2}+x^2\sum^{\infty}_{n=0}na_n x^{n-1}+3\sum^{\infty}_{n=0}a_n x^n$$
Por lo tanto, tienes que reunir los términos del poder común $n$ .
$$---------------------$$
$$(2+x^2)\sum^{\infty}_{n=0}n(n-1)a_n x^{n-2} = 2\sum^{\infty}_{n=0}n(n-1)a_n x^{n-2}+\sum^{\infty}_{n=0}n(n-1)a_{n} x^{n} $$
$$(2+x^2)\sum^{\infty}_{n=0}n(n-1)a_n x^{n-2} = 2\sum^{\infty}_{n=0}(n+2)(n+1)a_{n+2} x^{n}+\sum^{\infty}_{n=0}n(n-1)a_n x^{n} $$
$$(2+x^2)\sum^{\infty}_{n=0}n(n-1)a_n x^{n-2} = 4a_{2}+ 12a_{3}x+\sum^{\infty}_{n=2}\left( 2(n+2)(n+1)a_{n+2}+n(n-1)a_n \right)x^n $$
$$---------------------$$
$$x^2\sum^{\infty}_{n=0}na_n x^{n-1}=\sum^{\infty}_{n=0}na_n x^{n+1}=\sum^{\infty}_{n=2}(n-1)a_{n-1} x^{n} $$
$$---------------------$$
$$(2+x^2)y"+x^2y'+3y=4a_{2}+ 12a_{3}x+\sum^{\infty}_{n=2}\left( 2(n+2)(n+1)a_{n+2}+n(n-1)a_n \right)x^n +\sum^{\infty}_{n=2}(n-1)a_{n-1} x^{n} +3a_0+3a_1x+\sum^{\infty}_{n=2}3a_n x^n$$
$$---------------------$$
$$(2+x^2)y"+x^2y'+3y=\sum^{\infty}_{n=0}c_n x^n$$ $$c_0=4a_{2}+3a_0$$ $$c_1=12a_{3}+3a_1$$ $$c_n=2(n+2)(n+1)a_{n+2}+n(n-1)a_n +(n-1)a_{n-1}+3a_n\qquad n\geq 2$$