Simplifica:
$$\frac{\frac{16x^4}{81} - y^4}{\frac{2x}{3} + y}$$
Wolfram alpha confirma la respuesta de la hoja de respuestas: Respuesta de Wolframalpha
Simplifica:
$$\frac{\frac{16x^4}{81} - y^4}{\frac{2x}{3} + y}$$
Wolfram alpha confirma la respuesta de la hoja de respuestas: Respuesta de Wolframalpha
Dejemos que $u=\frac{2x}{3}$ y observe que $u^{4}=\big(\frac{2x}{3}\big)^{4}=\frac{2^{4}x^{4}}{3^{4}}=\frac{16x^{4}}{81}$ .
Así que tenemos:
$\frac{\frac{16x^{4}}{81}-y^{4}}{\frac{2x}{3}+y}=\frac{u^{4}-y^{4}}{u+y}=\frac{(u^{2}-y^{2})(u^{2}+y^{2})}{u+y}=\frac{(u-y)(u+y)(u^{2}+y^{2})}{u+y}=(u-y)(u^{2}+y^{2})=(\frac{2x}{3}-y)(\frac{4x^{2}}{9}+y^{2})$
$=(\frac{1}{3}(2x-3y))(\frac{1}{9}(4x^{2}+9y^{2}))=\frac{1}{27}(2x-3y)(4x^{2}+9y^{2})=\frac{1}{27}(8x^{3}-12x^{2}y+18xy^{2}-27y^{3})$
I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.