Cómo probar : $\cos^32\theta + 3\cos2\theta = 4(\cos^6 \theta -\sin^6 \theta)$
Respuestas
¿Demasiados anuncios?$4(\cos^6\theta-\sin^6\theta)$
$=4((\cos^2\theta)^3-(\sin^2\theta)^3)$
$=4(\cos^2\theta-\sin^2\theta)(\cos^4\theta+\sin^4\theta+\cos^2\theta\sin^2\theta)$
$=4\cos 2\theta[\{(\cos^2\theta+\sin^2\theta)^2-2\cos^2\theta\sin^2\theta\}+\cos^2\theta\sin^2\theta]$
$=4\cos 2\theta[\{1-2\cos^2\theta\sin^2\theta\}+\cos^2\theta\sin^2\theta]$
$=4\cos 2\theta(1-\cos^2\theta\sin^2\theta)$
$=4\cos2\theta-\cos2\theta\sin^22\theta$
$=4\cos2\theta-\cos2\theta(1-\cos^22\theta)$
$=\cos^32\theta+3\cos2\theta$
$4(\cos^6 \theta -\sin^6 \theta) = 4(\cos^2 \theta -\sin^2 \theta)(\cos^4 \theta + \cos^2 \theta\sin^2 \theta+\sin^4 \theta) = 4(\cos^2 \theta -\sin^2 \theta)( (\cos^2 \theta +\sin^2 \theta)^2 - 2\cos^2 \theta\sin^2 \theta + \cos^2 \theta\sin^2 \theta) = 4(\cos^2 \theta -\sin^2 \theta)( 1 - \cos^2 \theta\sin^2 \theta ) = 4\cos2\theta(1- \dfrac{\sin^2 2\theta}{4}) = 4\cos2\theta - \sin^2 2\theta\cos2\theta = 4\cos2\theta - (1-\cos^22\theta)\cos2\theta = 3\cos2\theta +\cos^3\theta $