4 votos

Demostrar que al menos una raíz real de $ax^2+bx+c$ está en $(0;\sqrt{3}-1)$

Dado que $\left|a\left(b-c\right)\right|>\left|b^2-ca\right|+\left|c^2-ab\right|$ y la ecuación $ax^2+bx+c=0$ tiene al menos una raíz real. Demuestra que al menos una raíz real de $ax^2+bx+c=0$ está en $(0;\sqrt{3}-1)$ .

He intentado resolver el problema sin éxito:

Dejar $b'=\frac{b}{a}, c'=\frac{c}{a}$ Me quedo con $$x^2+b'x+c'=0(1)$$ y $$\left|\left(b'-c'\right)\right|>\left|b'^2-c'\right|+\left|c'^2-b'\right|(2).$$

Desde $f(x)=x^2+b'x+c'$ es continua en $\mathbb{R}$ Decidí probar que $f(0)f(\sqrt{3}-1)<0$ de la que $x_0 \in (0;\sqrt{3}-1)$ sigue.

De (1) tengo $b'^2-4c'\geq 0$ . Y de (2) tengo que $$\left|\left(b'-c'\right)\right|>\left|b'^2+c'^2-b'-c'\right|>\left|b'^2+c'^2\right|-\left|b'+c'\right|,$$ lo que significa $$|b'-c'|+|b'+c'|>|b'^2+c'^2|\Leftrightarrow 2(b'^2+c'^2)>(b'^2+c'^2)^2\Leftrightarrow b'^2+c'^2<2.$$

De esto puedo deducir algunas cosas como $|b'c'|<1, b'+c'<2$ o incluso $-2-\sqrt{6}<c'<-2+\sqrt{6}$ pero todavía no puedo usarlos para probar $f(0)f(\sqrt{3}-1)<0$ .

¿Podría ayudarme con este problema?

1voto

Ahora reetiquetaré las variables por conveniencia, $t:=x,\,x:=\frac{b}{a},\,y:=\frac{c}{a}$ ( $a\ne 0$ véase 1. a continuación), por lo que tenemos $$|x-y|>|x^2-y|+|y^2-x|,\quad x^2-4y\ge 0.$$ Ahora abriré los signos de valores absolutos, sí, considerando $8$ posibilidades (ver 2. más adelante), para resolver la desigualdad para $x,\,y$ para poder obtener la imagen

5

junto con las soluciones $$\left[ \begin{array}{l} \begin{cases}-1<x<0\\ 1 - \sqrt{1 - x^2}<y<-x\end{cases}\\ \begin{cases}0<x<1\\ -\sqrt{-(x - 2) x}<y<-x\end{cases}\\ \end{array} \right.$$ Ahora el primer corchete (la región superior) se vuelve inválido, porque se da que la ecuación $t^2+xt+y=0$ tiene raíces reales, por lo que el determinante $x^2-4y\ge 0$ es decir $y\le \frac{x^2}{4}$ pero para $-1<x<0$ $$1 - \sqrt{1 - x^2}>\frac{x^2}{4}$$ $$\sqrt{1 - x^2}<1-\frac{x^2}{4}$$ $$4\sqrt{1 - x^2}<4-x^2$$ $$16(1 - x^2)<16-8x^2+x^4$$ $$8x^2+x^4>0$$ Ahora mostraré que la gráfica de $y=-\sqrt{-(x - 2) x}$ (para $0<x<1$ ) está por encima de la línea $(\sqrt{3}-1)^2+(\sqrt{3}-1)x+y=0$ que completa la prueba ya que todas las soluciones de desigualdades válidas estarán dentro de la región de $\left((\sqrt{3}-1)^2+(\sqrt{3}-1)x+y\right)y<0$ $\Leftrightarrow$ $f(\sqrt{3}-1)\cdot f(0)<0$ para el $f$ definida en el PO.

6

$$-\sqrt{-(x - 2) x}>-\left((\sqrt{3}-1)^2+(\sqrt{3}-1)x\right)$$ $$\sqrt{-(x - 2) x}<(\sqrt{3}-1)\left((\sqrt{3}-1)+x\right)$$ $$-(x - 2) x<(\sqrt{3}-1)^2\left((\sqrt{3}-1)+x\right)^2$$ $$2 x - x^2<-2 \sqrt{3} x^2 + 4 x^2 + 12 \sqrt{3} x - 20 x - 16 \sqrt{3} + 28$$ $$(5-2 \sqrt{3})x^2+(12 \sqrt{3}-22)x- 16 \sqrt{3} + 28>0$$ $$\frac{D}{4}=(6 \sqrt{3}-11)^2-(5-2 \sqrt{3})(-16 \sqrt{3} + 28)=$$ $$4 \sqrt{3} - 7<0,$$ como $(5-2 \sqrt{3})>0$ por lo que toda la parábola está por encima $y=0$ (porque no hay intersecciones), QED.


  1. Considere $a=0$ por separado para dividir por $a\ne 0$ más tarde:
    $$0>|b^2|+|c^2|$$ $$\emptyset$$

$$ \hbox{1) }\begin{cases} x−y\ge 0\\ x^2−y\ge 0\\ y^2−x\ge 0\\ \end{cases}\quad \hbox{2) }\begin{cases} x−y< 0\\ x^2−y\ge 0\\ y^2−x\ge 0\\ \end{cases}\quad \hbox{3) }\begin{cases} x−y\ge 0\\ x^2−y< 0\\ y^2−x\ge 0\\ \end{cases}\quad \hbox{4) }\begin{cases} x−y< 0\\ x^2−y< 0\\ y^2−x\ge 0\\ \end{cases}\\ \hbox{5) }\begin{cases} x−y\ge 0\\ x^2−y\ge 0\\ y^2−x< 0\\ \end{cases}\quad \hbox{6) }\begin{cases} x−y< 0\\ x^2−y\ge 0\\ y^2−x< 0\\ \end{cases}\quad \hbox{7) }\begin{cases} x−y\ge 0\\ x^2−y< 0\\ y^2−x< 0\\ \end{cases}\quad \hbox{8) }\begin{cases} x−y< 0\\ x^2−y< 0\\ y^2−x< 0\\ \end{cases}$$ 7

$$\hbox{1) }(x-y)>(x^2-y)+(y^2-x)$$ $$y^2 + x^2-2 x+1<1$$ $$y^2 + (x-1)^2<1$$ $$\hbox{2) }-(x−y)>(x^2−y)+(y^2−x)$$ $$x^2 + y^2-2y+1<1$$ $$x^2 + (y-1)^2<1$$ $$\hbox{4) }-(x−y)>-(x^2−y)+(y^2−x)$$ $$(y - x) (x + y)<0$$ $$\hbox{5) }(x−y)>(x^2−y)-(y^2−x)$$ $$(y - x) (x + y)>0$$ $$\hbox{7) }(x−y)>-(x^2−y)-(y^2−x)$$ $$x^2 + y^2-2y+1>1$$ $$x^2 + (y-1)^2>1$$ $$\emptyset$$ $$\hbox{8) }-(x−y)>-(x^2−y)-(y^2−x)$$ $$x^2-2x+1 + y^2>1$$ $$(x-1)^2 + y^2>1$$ $$\emptyset$$ 8

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X