He estado tratando de ajustar un modelo de lazo utilizando cv.glmnet
. Intenté aplicar cuatro modelos diferentes (3 utilizando cv.glmnet
y 1 utilizando caret::train
) basado en la normalización. Los cuatro modelos dan estimaciones de coeficientes muy diferentes, y no logro entender por qué.
Aquí hay un código totalmente reproducible:
library("glmnet")
data(iris)
iris <- iris
dat <- iris[iris$Species %in% c("setosa","versicolor"),]
X <- as.matrix(dat[,1:4])
Y <- as.factor(as.character(dat$Species))
set.seed(123)
model1 <- cv.glmnet(x = X,
y = Y,
family = "binomial",
standardize = FALSE,
alpha = 1,
lambda = rev(seq(0,1,length=100)),
nfolds = 3)
set.seed(123)
model2 <- cv.glmnet(x = scale(X, center = T, scale = T),
y = Y,
family = "binomial",
standardize = FALSE,
alpha = 1,
lambda = rev(seq(0,1,length=100)),
nfolds = 3)
set.seed(123)
model3 <- cv.glmnet(x = X,
y = Y,
family = "binomial",
standardize = TRUE,
alpha = 1,
lambda = rev(seq(0,1,length=100)),
nfolds = 3)
##Using caret
library("caret")
lambda.grid <- rev(seq(0,1,length=100)) #set of lambda values for cross-validation
alpha.grid <- 1 #alpha
trainControl <- trainControl(method ="cv",
number=3) #3-fold cross-validation
tuneGrid <- expand.grid(.alpha=alpha.grid, .lambda=lambda.grid) #these are tuning parameters to be passed into the train function below
set.seed(123)
model4 <- train(x = X,
y = Y,
method="glmnet",
family="binomial",
standardize = FALSE,
trControl = trainControl,
tuneGrid = tuneGrid)
c1 <- coef(model1, s=model1$lambda.min)
c2 <- coef(model2, s=model2$lambda.min)
c3 <- coef(model3, s=model3$lambda.min)
c4 <- coef(model4$finalModel, s=model4$finalModel$lambdaOpt)
c1 <- as.matrix(c1)
c2 <- as.matrix(c2)
c3 <- as.matrix(c3)
c4 <- as.matrix(c4)
model2
escala las variables independientes (vector X
) de antemano y model3
lo hace fijando standardize = TRUE
. Así que al menos estos dos modelos deberían dar resultados idénticos, pero no es así.
Los lambda.min obtenidos de los cuatro modelos son modelo1 = 0 modelo2 = 0 modelo3 = 0 modelo4 = 0,6565657
Las estimaciones de los coeficientes entre los modelos también difieren drásticamente. ¿Por qué ocurre esto?