Probablemente, hay que asumir que $X_{0} = 0$ y que $(X_{t})$ y $(Z_{t})$ son independientes. También supondré que $Z_{1},Z_{2},Z_{3}$ comparten un medio común $E(Z_{i}) = \mu_{Z}$ .
Si esto es cierto,
Cov $(X_{1},X_{1}) = Var(X_{1}) = Var(Z_{1})$
Para encontrar $Cov(X_{1},X_{3})$ Primero observe que $X_{2} = \phi X_{1} + Z_{2}$ para que
$X_{3} = \phi X_{2} + Z_{3} = \phi(\phi X_{1} + Z_{2}) + Z_{3} = \phi^{2}X_{1} + \phi Z_{2} + Z_{3}$ .
Por lo tanto,
$E(X_{3}) = \phi^{2}E(X_{1}) + \mu_{Z}(\phi + 1)$ .
y
$E(X_{3}X_{1}) = \phi^{2}E(X_{1}^{2}) + \phi E(X_{1}Z_{2}) + E(X_{1}Z_{3}) = \phi^{2}E(X_{1}^{2}) + \mu_{Z}E(X_{1})(\phi + 1)$ .
Finalmente, \begin{eqnarray} Cov(X_{3},X_{1}) &=& E(X_{3}X_{1}) - E(X_{3})E(X_{1}) \\ &=& \phi^{2}E(X_{1}^{2}) + \mu_{Z}E(X_{1})(\phi + 1) - \phi^{2}E(X_{1})^{2} + \mu_{Z}E(X_{1})(\phi + 1) \\ &=& \phi^{2}E(X_{1}^{2}) - \phi^{2}E(X_{1})^{2} \\ &=& \phi^{2}Var(X_{1}) \\ &=& \phi^{2}Var(Z_{1}) \end{eqnarray}