¿Conocemos alguna forma agradable de calcular estos $2$ ¿Integrales?
$$i) \space \int_0^1 \frac{\text{Li}_2\left(x-x^2\right)}{x^2-x+1} \, dx$$
$$ii)\space \int_0^1 \frac{\text{Li}_2\left(x-x^2\right)}{\left(x^2-x+1\right)^2} \, dx$$
Si se considera en la primera integral que $$\frac{1}{{x^2-x+1}}=\frac{1}{i \sqrt{3}}\left(\frac{1}{ \left(x-\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)\right)}-\frac{1}{ \left(x-\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right)\right)}\right)$$ entonces parece que Mathematica puede manejar las integrales resultantes.
También es fácil observar que $$\frac{1}{i \sqrt{3}}\int_0^1 \frac{(1-2x)\log \left(x-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) \log \left(x-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)}{ x(1-x)} \, dx=0$$ y luego, para la parte restante, Mathematica arroja algún resultado más corto en polilogaritmos. Así, tenemos que $$ \int_0^1 \frac{\text{Li}_2\left(x-x^2\right)}{x^2-x+1} \, dx$$ $$=\frac{i}{\sqrt{3}}\int_0^1 \frac{ (1-2 x) \log ^2\left(x-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)}{ x-x^2} \, dx-\frac{i}{\sqrt{3}}\int_0^1 \frac{ (1-2 x) \log ^2\left(x-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right)}{ x-x^2} \, dx$$ $$=\frac{2i}{\sqrt{3}}\int_0^1 \frac{ (1-2 x) \log ^2\left(x-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)}{ x-x^2} \, dx$$ donde la última igualdad se obtiene simplemente utilizando el cambio de variable $x\mapsto 1-x$ .
EDITAR : Utilizando la idea de la fórmula de reflexión del dilogaritmo, obtenemos que
$$\int_0^1 \frac{\text{Li}_2\left(x^2-x+1\right)}{x^2-x+1} \, dx=\frac{2}{\sqrt{3}} \int_{-\pi/6}^{\pi/6} \text{Li}_2\left(\frac{3 \sec ^2(x)}{4}\right) \, dx$$ $$=\frac{4}{\sqrt{3}} \int_{-\pi/6}^{\pi/6} \text{Li}_2\left(-\frac{\sqrt{3}}{2} \sec (x)\right) \, dx+\frac{4}{\sqrt{3}} \int_{-\pi/6}^{\pi/6} \text{Li}_2\left(\frac{\sqrt{3}}{2} \sec (x)\right) \, dx$$ pero no estoy seguro de que pueda dar lugar a una solución elegante.