$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\ln(\sec(x+h)) -\ln(\sec(x))}{h} $$
Utilizando $\ln(A) - \ln(B) = \ln(\frac{A}{B})$
$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\ln(\frac{\sec(x+h)}{\sec(x)})}{h} $$
cubriendo $\sec(x)$ a $\cos(x)$ utilizando $\cos(x) = \frac{1}{\sec(x)}$
$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\ln(\frac{\cos(x)}{\cos(x+h)})}{h} $$
$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\ln(1+\frac{\cos(x)}{\cos(x+h)}-1)}{h} $$
$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\ln(1+\frac{\cos(x) - \cos(x+h)}{\cos(x+h)})}{h} $$
multiplicar y dividir por $\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}$
$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\ln(1+\frac{\cos(x) - \cos(x+h)}{\cos(x+h)})}{h}\frac{\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}}{\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}} $$
reposicionamiento
$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\ln(1+\frac{\cos(x) - \cos(x+h)}{\cos(x+h)})}{\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}}\frac{\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}}{h} $$
límite de separación
$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\ln(1+\frac{\cos(x) - \cos(x+h)}{\cos(x+h)})}{\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}}\lim_{h\to0} \frac{\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}}{h} $$
Como $h$ se acerca a 0 también lo hace $\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}$ ya que el numerador empieza a acercarse a $0$ . ( $\cos(x) - \cos(x)$ )
supongamos que $t = \frac{\cos(x)-\cos(x+h)}{\cos(x+h)}$ y por lo tanto t se acerca a $0$ cuando $h$ se acerca a $0$
de ahí que la ecuación resulte ser
$$ \frac{d}{dx}\ln\sec(x) = \lim_{t\to0} \frac{\ln(1+t)}{t} \lim_{h\to0} \frac{\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}}{h} $$
Utilizando el límite estándar $\lim_{x\to0} \frac{ln(x+1)}{x} = 1$
Por lo tanto,
$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\frac{\cos(x)-\cos(x+h)}{\cos(x+h)}}{h} $$
$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\cos(x)-\cos(x+h)}{h\cos(x+h)} $$
Aplicando $\cos(A) - \cos(B) = -2\sin(\frac{A+B}{2})\sin(\frac{A-B}{2})$
$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{-2\sin(\frac{2x+h}{2})\sin(\frac{-h}{2})}{h\cos(x+h)} $$
Llevar la $-2$ abajo
$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\sin(\frac{2x+h}{2})\sin(\frac{-h}{2})}{\frac{-h}{2}\cos(x+h)} $$
reordenando
$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\sin(\frac{2x+h}{2})}{\cos(x+h)} \lim_{h\to0} \frac{\sin(\frac{-h}{2})}{\frac{-h}{2}} $$
Utilizar el límite estándar $\lim_{x\to0} \frac{sin(x)}{x} = 1$
Por lo tanto,
$$ \frac{d}{dx}\ln\sec(x) = \lim_{h\to0} \frac{\sin(\frac{2x+h}{2})}{\cos(x+h)} $$
Poniendo $h = 0$
$$ \frac{d}{dx}\ln\sec(x) = \frac{\sin(\frac{2x}{2})}{\cos(x)} $$
$$ \frac{d}{dx}\ln\sec(x) = \frac{\sin(x)}{\cos(x)} $$
$$ \frac{d}{dx}\ln\sec(x) = \tan(x) $$