Calcular $\sin 69^{\circ},\sin 18^{\circ} , \tan 23^{\circ}$ . con una precisión de hasta dos decimales o en surds .
$\begin{align}\sin 69^{\circ}&=\sin (60+9)^{\circ}\\~\\ &=\sin (60^{\circ})\cos (9^{\circ})+\cos (60^{\circ})\sin (9^{\circ})\\~\\ &=\dfrac{\sqrt{3}}{2}\cos (9^{\circ})+\dfrac{1}{2}\sin (9^{\circ})\\~\\ &=\dfrac{1.73}{2}\cos (9^{\circ})+\dfrac{1}{2}\sin (9^{\circ})\\~\\ \end{align}$
$\begin{align}\sin 18^{\circ}&=\sin (30-12)^{\circ}\\~\\ &=\sin (30^{\circ})\cos (12^{\circ})-\cos (30^{\circ})\sin (12^{\circ})\\~\\ &=\dfrac{1}{2}\cos (12^{\circ})-\dfrac{\sqrt3}{2}\sin (12^{\circ})\\~\\ &=\dfrac{1}{2}\cos (12^{\circ})-\dfrac{1.73}{2}\sin (12^{\circ})\\~\\ \end{align}$
$\begin{align}\tan 23^{\circ}&=\dfrac{\sin (30-7)^{\circ}}{\cos (30-7)^{\circ}}\\~\\ &=\dfrac{\sin (30)^{\circ}\cos 7^{\circ}-\cos (30)^{\circ}\sin 7^{\circ}}{\cos (30)^{\circ}\cos 7^{\circ}+\sin (30)^{\circ}\sin 7^{\circ}}\\~\\ \end{align}$
¿hay alguna manera sencilla, tengo que memorizar todos los valores de $\sin,\cos $ de $1,2,3\cdots15$
He estudiado matemáticas hasta $12$ de grado.