Tenga en cuenta que el siguiente procedimiento es incorrecto (pero no sé la razón):
I=∫π0ln(1+√1−κ2sin2x)dx
=12∫2π0ln(1+√1−κ2sin2x)dx (ln(1+√1−κ2sin2x) is a periodic function of period π)
=12[xln(1+√1−κ2sin2x)]2π0−12∫2π0x d(ln(1+√1−κ2sin2x))
=πln22+12∫2π0κ2xsinxcosx√1−κ2sin2x(1+√1−κ2sin2x)dx
=πln22+12∫02πκ2(2π−x)sin(2π−x)cos(2π−x)√1−κ2sin2(2π−x)(1+√1−κ2sin2(2π−x))d(2π−x)
=πln22+12∫2π0κ2(2π−x)sinxcosx√1−κ2sin2x(1+√1−κ2sin2x)dx
∴
I=\dfrac{\pi\ln2}{2}-\left[\pi\ln\left(1+\sqrt{1-\kappa^2\sin^2x}\right)\right]_0^{2\pi}
I=\dfrac{\pi\ln2}{2}
De hecho, el siguiente procedimiento es realmente correcto:
I=\int_0^\pi\ln\left(1+\sqrt{1-\kappa^2\sin^2x}\right)dx=2\int_0^\frac{\pi}{2}\ln\left(1+\sqrt{1-\kappa^2\sin^2x}\right)dx
\dfrac{dI}{d\kappa}=-\int_0^\frac{\pi}{2}\dfrac{2\kappa\sin^2x}{\sqrt{1-\kappa^2\sin^2x}\left(1+\sqrt{1-\kappa^2\sin^2x}\right)}dx
=-\int_0^\frac{\pi}{2}\dfrac{2\kappa\sin^2x\left(1-\sqrt{1-\kappa^2\sin^2x}\right)}{\sqrt{1-\kappa^2\sin^2x}\left(1+\sqrt{1-\kappa^2\sin^2x}\right)\left(1-\sqrt{1-\kappa^2\sin^2x}\right)}dx
=\int_0^\frac{\pi}{2}\dfrac{2\kappa\sin^2x\left(\sqrt{1-\kappa^2\sin^2x}-1\right)}{(1-(1-\kappa^2\sin^2x))\sqrt{1-\kappa^2\sin^2x}}dx
=\int_0^\frac{\pi}{2}\dfrac{2\kappa\sin^2x\left(\sqrt{1-\kappa^2\sin^2x}-1\right)}{\kappa^2\sin^2x\sqrt{1-\kappa^2\sin^2x}}dx
=\int_0^\frac{\pi}{2}\dfrac{2}{\kappa}dx-\int_0^\frac{\pi}{2}\dfrac{2}{\kappa\sqrt{1-\kappa^2\sin^2x}}dx
Cuando 0\leq\kappa\leq1 ,
\int_0^\frac{\pi}{2}\dfrac{2}{\kappa}dx-\int_0^\frac{\pi}{2}\dfrac{2}{\kappa\sqrt{1-\kappa^2\sin^2x}}dx
=\int_0^\frac{\pi}{2}\dfrac{2}{\kappa}dx-\int_0^\frac{\pi}{2}\dfrac{2}{\kappa}\sum\limits_{n=0}^\infty\dfrac{(2n)!\kappa^{2n}\sin^{2n}x}{4^n(n!)^2}dx
=-\int_0^\frac{\pi}{2}\sum\limits_{n=1}^\infty\dfrac{(2n)!\kappa^{2n-1}\sin^{2n}x}{2^{2n-1}(n!)^2}dx
Para \int\sin^{2n}x~dx , donde n es cualquier número natural,
\int\sin^{2n}x~dx=\dfrac{(2n)!x}{4^n(n!)^2}-\sum\limits_{k=1}^n\dfrac{(2n)!((k-1)!)^2\sin^{2k-1}x\cos x}{4^{n-k+1}(n!)^2(2k-1)!}+C
\therefore-\int_0^\frac{\pi}{2}\sum\limits_{n=1}^\infty\dfrac{(2n)!\kappa^{2n-1}\sin^{2n}x}{2^{2n-1}(n!)^2}dx
=-\left[\sum\limits_{n=1}^\infty\dfrac{((2n)!)^2\kappa^{2n-1}x}{2^{4n-1}(n!)^4}-\sum\limits_{n=1}^\infty\sum\limits_{k=1}^n\dfrac{((2n)!)^2\kappa^{2n-1}((k-1)!)^2\sin^{2k-1}x\cos x}{2^{4n-2k+1}(n!)^4(2k-1)!}\right]_0^\frac{\pi}{2}
=-\sum\limits_{n=1}^\infty\dfrac{((2n)!)^2\pi\kappa^{2n-1}}{16^n(n!)^4}
\therefore I=-\sum\limits_{n=1}^\infty\dfrac{(2n)!(2n-1)!\pi\kappa^{2n}}{16^n(n!)^4}+c
\because I(0)=\int_0^\pi\ln2~dx=[x\ln2]_0^\pi=\pi\ln2
\therefore c=\pi\ln2
Por lo tanto, I=\pi\ln2-\sum\limits_{n=1}^\infty\dfrac{(2n)!(2n-1)!\pi\kappa^{2n}}{16^n(n!)^4}