$$ \frac{\partial E}{\partial c_k} = \frac{\displaystyle\partial\int_0^1\left( f(x)-\sum_{j=0}^{n-1}c_j x^j\right)^2 dx }{\partial c_k }=\int_0^1\frac{\partial }{\partial c_k}\left( f(x)-\sum_{j=0}^{n-1}c_j x^j\right)^2 dx $$ Aplicando la regla de la cadena: $$ \int_0^1\left[2\cdot\frac{\partial }{\partial c_k}\left( f(x)-\sum_{j=0}^{n-1}c_j x^j\right)\right] \left( f(x)-\sum_{j=0}^{n-1}c_j x^j\right) dx = \int_0^1 -2x^k \left( f(x)-\sum_{j=0}^{n-1}c_j x^j\right) dx $$
$\displaystyle \frac{\partial E}{\partial c_k}=0$ es lo mismo que $$\sum_{j=0}^{n-1}c_j \int_0^1 x^{j+k}dx =\int_0^1 x^kf(x)dx \Longrightarrow \sum_{j=0}^{n-1}c_j \cdot \frac{1}{j+k+1}(1-0)=\int_0^1 x^k f(x)dx $$
Dejemos que $$ \mathbf{c}= \left(\begin{array}{c} c_0\\ \vdots\\ c_{n-1} \end{array} \right), \ \ b_k= \int_0^1 x^k f(x)dx \ \ \mathrm{y}\ \ \mathbf{m}_k=\left(\frac{1}{k+1},\cdots,\frac{1}{k+n} \right)$$ entonces $\displaystyle \frac{\partial E}{\partial c_k}=0$ es lo mismo que $\mathbf{m}_k\mathbf{c}=b_k$ , para $k=0,\cdots,n-1$ podemos reescribir el $n$ ecuaciones como el sistema $\mathbf{M}\mathbf{c}=\mathbf{b}$ $$\underbrace{\left( \begin{array}{ccc} \displaystyle \frac{1}{0+1} & \cdots & \displaystyle \frac{1}{0+n} \\ \vdots & \ddots & \vdots\\ \displaystyle \frac{1}{n-1+1}&\cdots& \displaystyle\frac{1}{n-1+n} \end{array}\right)}_{\mathbf{M}} \underbrace{\left(\begin{array}{c} c_0\\ \vdots\\ c_{n-1} \end{array} \right)}_{\mathbf{c}}= \underbrace{\left(\begin{array}{c} \displaystyle\int_0^1 x^0 f(x)dx\\ \vdots\\ \displaystyle\int_0^1 x^{n-1}f(x)dx \end{array} \right)}_{\mathbf{b}}$$