$$\int_{0}^{2}\sqrt{4x+1}\space\text{d}x=$$
Sustituir $u=4x+1$ y $\text{d}u=4\space\text{d}x$ .
Esto da un nuevo límite inferior $u=4\cdot0+1=1$ y el límite superior $u=4\cdot2+1=9$ :
$$\frac{1}{4}\int_{1}^{9}\sqrt{u}\space\text{d}u=\frac{1}{4}\int_{1}^{9}u^{\frac{1}{2}}\space\text{d}u=$$
Utilice $\int y^{n}\space\text{d}y=\frac{y^{1+n}}{1+n}+\text{C}$
$$\frac{1}{4}\left[\frac{u^{1+\frac{1}{2}}}{1+\frac{1}{2}}\right]_{1}^{9}=\frac{1}{4}\left[\frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{9}=\frac{1}{4}\cdot\frac{2}{3}\left[u^{\frac{3}{2}}\right]_{1}^{9}=\frac{1}{6}\left[u^{\frac{3}{2}}\right]_{1}^{9}=\frac{1}{6}\left(9^{\frac{3}{2}}-1^{\frac{3}{2}}\right)=\frac{1}{6}(26)=\frac{13}{3}$$