Deje $f(x)=\sum_{k=1}^{4}a_{k}x^{k},\varepsilon =\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}.$
$\qquad\qquad 4\times 4$ matriz $$T=\begin{bmatrix} 1& a_{2}& a_{3}& a_{4}\\ 1& a_{1}& a_{2}& a_{3}\\ 1& a_{4}& a_{1}& a_{2}\\ 0& \varepsilon^{2}& \varepsilon& 1\end{bmatrix}$$
Mostrar que $$\det(T)=f(\varepsilon^{2})f(\varepsilon^{3})$$
Además, puedo generalizar esta pregunta :
Deje $f(x)=\sum_{k=1}^{n}a_{k}x^{k},\varepsilon =\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n}.$
$\qquad\qquad n\times n$ matriz $$T=\begin{bmatrix} 1& a_{2}& a_{3} & \cdots & a_{n}\\ 1& a_{1}& a_{2}&\cdots & a_{n-1}\\ \cdots& \cdots& \cdots&\cdots & \cdots\\ 1& a_{4}& a_{5}& \cdots &a_{2}\\ 0& \varepsilon^{n-2}& \varepsilon^{n-3}& \cdots& 1\end{bmatrix}$$
Mostrar que $$\det(T)=f(\varepsilon^{2})f(\varepsilon^{3}) \cdots f(\varepsilon^{n-1})$$
Deje que $$A=\begin{bmatrix} 1& 0& a_{3}& a_{4}& a_{1}\\ 0& 1& a_{2}& a_{3}& a_{4}\\ 0& 1& a_{1}& a_{2}& a_{3}\\ 0& 1& a_{4}& a_{1}& a_{2}\\ 0& 0& \varepsilon^{2}& \varepsilon& 1\end{bmatrix}$$ then $\det(T)=\det(A)$. Now add $\varepsilon^{2}$ of row 4 to row 1, add $\varepsilon^{4}$ of row 3 to row 1, add $\varepsilon^{6}$ de la fila 2 a la fila 1, obtenemos $$A=\begin{bmatrix} 1& 0& a_{3}& a_{4}& a_{1}\\ 0& 1& a_{2}& a_{3}& a_{4}\\ 0& 1& a_{1}& a_{2}& a_{3}\\ 0& 1& a_{4}& a_{1}& a_{2}\\ 0& 0& \varepsilon^{2}& \varepsilon& 1\end{bmatrix}\longrightarrow \begin{bmatrix} 1& 0& \varepsilon^{4}f(\varepsilon^{2})& \varepsilon^{2}f(\varepsilon^{2})& f(\varepsilon^{2})\\ 0& 1& a_{2}& a_{3}& a_{4}\\ 0& 1& a_{1}& a_{2}& a_{3}\\ 0& 1& a_{4}& a_{1}& a_{2}\\ 0& 0& \varepsilon^{2}& \varepsilon& 1\end{bmatrix}=A_{1}$$
¿Cómo puedo separar $f(\varepsilon^{2})$$\det(A_{1})$?
Si usted tiene otra prueba a mi pregunta,por favor, dame algunas pistas. Cualquier ayuda se agradece